
SSO Plugin
Identity Federation Service
J System Solutions
http://www.javasystemsolutions.com

Version 3.4

JSS SSO Plugin – Identity federation service

Introduction...3

Enabling the identity federation service..4

Federation key...4

Token lifetime...4

Overview of the identity federation process..5

Retrieving the authenticated user..5

Installing the identity federation acceptor filter into a JEE application........7

Updating the web.xml file..7

Installing the jar files..8

Locating the jars and web.xml file in the installation files........................8

Example web application...9

Page 3 of 9

Introduction

The SSO Plugin provides a range of comprehensive range of SSO
capabilities for the BMC AR System and since version 3.3 of the product,
third party applications can delegate SSO to the SSO Plugin using the
identity federation service.

The functionality has been specifically designed to be quick and easy to
implement and involves installing a JEE filter into a third party web
application.

Assuming the third party application uses the standard JEE technique for
checking a user has validated, the integration should be quick and easy
for any developer with a working knowledge of JEE development.

The third party application can use the service to access the raw SSO
username, or the AR System User form Login Name and groups.

This document refers to the examplewebapp shipped with SSO Plugin.
This is purely an example of how the Identity Federation Service can be
used in practice.

For integration advice, contact the JSS support team.

http://www.javasystemsolutions.com

Page 4 of 9

Enabling the identity federation service

The identity federation service isn't enabled by default. To enable it, go to
the Midtier SSO Plugin setup page and click “Enable identity federation
service”. The following fields must also be set.

Federation key

This is known only to the SSO Plugin and the third party applications that
are integrating with the SSO Plugin. It is used as a seed to a hashing
function that allows the identity federation service and acceptor to trust
each other.

Token lifetime

When a user has been authenticated, the JSS identity federation acceptor
sets a cookie (with the name jss-ssoplugin). The cookie contains an
encoded token that includes the logged in user. The cookie is set to expire
after a period of time that is calculated to be the time at which the user
was authenticated with SSO Plugin, plus the value defined in this field.

Typically, a value of one day will ensure every client has to re-
authenticate with SSO Plugin once a day.

http://www.javasystemsolutions.com

Page 5 of 9

Overview of the identity federation process

The third party application runs the JSS identity federation acceptor filter.
It uses the following two conditions to define a user as authenticated:

1. The request hits the identity federation acceptor filter. If the session
has already been validated by the filter then it is allowed to
continue.

2. If the session has not been validated and the jss-ssoplugin cookie
exists and can be validated (using the federation key), the
username contained within it is set as the authenticated user and
the request is allowed to continue.

If there's no valid session or cookie, the following process is followed:

 1. The request is redirected (via an HTTP 302 response) to the SSO
Plugin identity federation service. This URL is defined in the filter's
initialisation parameters in the web.xml file.

 a) The URL requested by the client browser is passed as the jss-
return parameter to the SSO Plugin.

 b) The URL is also hashed (using the federation key) and set as the
jss-return-hash parameter. This allows the identity federation
service to confirm the request to authenticate was made from a
correctly configured identity federation acceptor.

 2. The SSO Plugin will authenticate the user using the configured
authentication method, ie built-in AD, OpenID, Siteminder, etc.

 3. If the user is successfully authenticated:

 a) The jss-return-hash parameter is validated (using the federation
key) to ensure the request was made by a valid identity
federation acceptor (see 1(b)). If this test fails, the request is
sent to an error page.

 b) If the jss-return-hash parameter is valid, the request is redirected
(via an HTTP 302 response) to the URL defined in the jss-return
parameter, with an encoded token (using the federation key) set
as the jss-token parameter.

 4. The request hits the third party application and the identity
federation acceptor filter. The jss-token parameter is validated
(using the federation key) to ensure it was sent by the identity
federation service. If so, the user is set on the session as the
authenticated user and the request allowed to continue.

Retrieving the authenticated user

The third party application can retrieve the logged in user through the
standard JEE technique of accessing the java . security . Principal object on
the javax . security . http . HttpServletRequest as follows:

java.security.Principal p= request.getUserPrincipal();

http://www.javasystemsolutions.com

http://download.oracle.com/javase/1.5.0/docs/api/java/security/Principal.html
http://download.oracle.com/javaee/5/api/javax/servlet/http/HttpServletRequest.html

Page 6 of 9

if (p!=null) // Is the user authenticated?
 System.out.println(“Username: “+p.getName());

Please note, if the application is protected by the JSS identity federation
acceptor filter, the request will not proceed to the application code unless
it is authenticated and request.getUserPrincipal() will always return the
Principal object.

http://www.javasystemsolutions.com

Page 7 of 9

Installing the identity federation acceptor filter into a
JEE application

The filter is installed by updating the applications web.xml file and
including jar file(s).

Updating the web.xml file

Open the web.xml file and include the following patch:

<filter>
 <filter-name>ssoplugin-identity-federation-acceptor</filter-name>
 <filter-class>
 com.javasystemsolutions.sso.identityfederation.IdentityFederatio
nAcceptor
 </filter-class>
 <!--
 Enter the URL of the identity federation service here.
 This is typically:
 http://hostname:8080/arsys/jss-sso/identityfederationservice
 -->
 <init-param>
 <param-name>identityFederationServiceURL</param-name>
 <param-value>
 http://localhost:8080/arsys/jss-sso/identityfederationservice
 </param-value>
 </init-param>
 <!--
 Enter the federation key set up in the SSO Plugin
 configuration interface. This is used to create hashes
 that allow the acceptor and service to trust each other.
 -->
 <init-param>
 <param-name>key</param-name>
 <param-value>mysecretkey</param-value>
 </init-param>
</filter>

<!-- Map URLs to protect -->
<filter-mapping>
 <filter-name>ssoplugin-identity-federation-acceptor</filter-name>
 <url-pattern>/secure.jsp</url-pattern>
</filter-mapping>

The following parameters are required by the filter:

1. identityFederationServiceURL: This points to the identity
federation service running on the SSO Plugin installation. The

http://www.javasystemsolutions.com

Page 8 of 9

identity federation service URL is /jss-sso/identityfederationservice,
relative to the Midtier installation. Therefore, if the Midtier is
installed at:

http://bmcmidtier:8080/arsys

then the identityFederationServiceURL is:

http://bmcmidtier:8080/arsys/jss-sso/identityfederationservice

2. key: This must be set to the federated identity key set in the Midtier
SSO Plugin interface.

The following parameters are optional:

1. logLevel: This controls the amount of logging generated by the
identity federation acceptor, the valid values are INFO, DEBUG and
TRACE. You are advised to set this to INFO in production.

2. useARSystemUser: If this is true, the Principal object will be
populated with the AR System Login Name if a valid SSO account
existed within AR System. Please note, it is entirely possible for a
user to have corporate SSO access (and an SSO username) but no
SSO enabled AR System account.

3. stripdomain: If you are validating against an Active Directory then
your SSO token will contain the Windows domain (ie
JAVASYSTEMSOLUTIONS\dkellett or
dkellett @ javasystemsolutions . com). Setting this value to true will
remove the domain element, returning dkellett in both cases.

3. convertcase: The valid values are upper and lower, which will
convert the SSO token to upper or lower case. This is useful for
matching SSO usernames to third party user accounts.

Please note: Options (3) and (4) are only available if option (2) is
false.

The filter is set to protect the web application via the <filter-mapping>
directives. You can set as many mappings as required in your application,
or even protect it all by setting /*.

Installing the jar files

The minimum requirement is to copy the jss-sso-thirdparty.jar file to the
third party application. If the application isn't already using commons
logging and log4j, these jars must be copied too.

Locating the jars and web.xml file in the installation files

The web.xml patch and jar files can be found in the example web
application. This is found in the thirdpartyauthentication directory.

http://www.javasystemsolutions.com

mailto:dkellett@javasystemsolutions.com

Page 9 of 9

Example web application

An example web application is provided with the product to demonstrate
how the Identity Federation Service can be used in practice and for
debugging your own third party integrations.

The example web application can be found in the thirdpartyauthentication
directory. It is called examplewebapp and you can install it as follows:

1. Update the web.xml file and alter the identityFederationServiceURL
and key parameters as discussed above.

2. Copy the web application into the Tomcat webapps directory.

3. Restart Tomcat.

You can now navigate your browser to the example web application (ie
http://midtier:8080/examplewebapp) and test the integration by clicking
the link to the secure page.

http://www.javasystemsolutions.com

	Introduction
	Enabling the identity federation service
	Federation key
	Token lifetime

	Overview of the identity federation process
	Retrieving the authenticated user

	Installing the identity federation acceptor filter into a JEE application
	Updating the web.xml file
	Installing the jar files
	Locating the jars and web.xml file in the installation files

	Example web application

