
XML Gateway
Installation and usage
J System Solutions
http://www.javasystemsolutions.com

Version 3.5.14

JSS XML Gateway Installation and usage - Page 2 of 77

Table of Contents
Introduction...9

AR System, SQL and LDAP integrations..9

Videos...9

Installing the XML Gateway...10

Installing the XML Gateway and the Mid Tier together...........................10

CMDB support..10

Background and required knowledge..11

XPath..11

Getting started, quickly...12

Creating a new AR System user through an XML post...........................12

Performing a query against an AR System database.............................12

Modifying an AR System user through an XML post...............................12

Configuration files...13

Primary configuration file – xmlgateway.xml..14

AR System servers..15

Encrypting AR System passwords..15

HTTP create/modify bindings..15

File fetchers..16

POP3 fetchers...16

Logging to a database..17

Creating, updating and deleting records...18

Location of templates...18

Performing your first transaction..18

Template structure...18

The root node..18

Transaction ID...19

Email on error...19

Form definitions..19

Target object (setting the form)...19

Set field...20

Setting a field to null..20

Conditional behaviour..20

Field mapping..20

Setting a field by an XPath query..20

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 3 of 77
Setting a field to null..20

Conditional behaviour..21

Importing attachments..21

Controlling the create/modify/delete functionality...................................22

Performing multiple operations with a single formDefinition........................23

Field limits...24

Field type conversion..24

XML responses to create, modify and delete transactions.....................25

Additional operations...25

dateFormat...25

timezone...26

queryFieldFromXPath..26

setFieldFromQuery..26

onError..27

setMessage...27

setGatewayValue..27

secure...28

Using AR System groups..28

schema...28

namespaces..29

Saxon vs Xerces...29

responseBuilder..29

filter..29

CSV..30

JSON...30

Swift...30

filter-class..30

Impersonating a different AR System user..30

Checksum...30

Functions..31

Checksum...31

Encrypt..31

Throttling..31

Querying the AR System...32

Location of templates...32

Performing your first transaction..32

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 4 of 77
Query requests...32

Template structure...33

The root node..33

Search criteria...33

Specifying the XML response template...34

Specifying a result field...34

Additional operations...35

Email on error...35

Namespaces...36

Securing a template..36

Validating against a schema...36

Changing the HTTP content type..36

Query statistics generated by the gateway..36

Removing elements..37

AR System server info and statistics...37

Attachments..37

Diary fields..38

Retrieving field properties...39

Mark fields on query...40

XML fragments..40

Complex query example...41

Sorting results..41

Parameterised queries...42

Chaining query templates..42

Encouraging portable templates...43

XSL Transformations...43

Filters..44

CSV...44

JSON..44

Swift..44

Setting file download headers...44

filter-class..45

Template based filters..45

Globally...45

Configurations...45

Setting filter on query request...45

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 5 of 77
JSON based queries..45

The AR System impersonate feature..46

Throttling..46

Securing templates through client authentication....................................47

HTTP URLs exposed by the gateway...48

Performing create/modify operations...48

Performing query operations..48

Authentication..49

Integrating with the gateway with other systems.....................................50

Java Messaging Services..50

Integration technique for create/modify/delete...50

Integration technique for queries..51

Configuration files...51

Core configuration...51

XML Gateway JMS components..53

Create/modify message listener..53

Query event message listener...54

Webservices exposed by the gateway...56

Locating the WSDLs..56

Important note..56

Services provided by the XML Gateway WSDL.......................................57

Create and modify..57

Querying...57

Querying through HTTP Query bindings..57

Query and forward to URL...57

Query and forward to SOAP endpoint..58

Query and forward to another XML Gateway..58

Query and forward to a Java Messaging Service...59

Query and forward to a message sending destination..................................59

Query ARS and forward to message sending framework..............................60

Query ARS and invoke a Plugin...60

Combined post and query...61

Combined query and post...61

Authenticate...61

Unauthenticate...61

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 6 of 77
Perform an XPath select..61

Message sending framework...63

Overview..63

Third party to AR System..63

AR System to third party...63

Key components of the message sending functionality.........................64

Destinations..64

HTTPDestination..64

SampleDestination..64

WebserviceDestination..65

Message handlers...65

DefaultMessageHandler...65

ARSMessageHandler..65

Error handlers...66

Triggers...66

Methods of operation..66

Invoking through a webservice..67

Using the scheduler...68

Spring configuration file...68

Core scheduler..68

Triggers...68

Jobs...69

Query and post to gateway...70

Query and post to a Java Messaging Service..70

Query and send to destination (such as HTTP)...71

Developing plugins..73

Bespoke response builders...73

Webservice plugins..73

Message sending destinations...74

Filters..74

Pre-production optimisation and system testing.......................................75

AR System form caching..75

Session handling..75

Memory footprint..76

Increasing the heap memory..76

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 7 of 77
Increasing the PermGen size...76

Reviewing log files for performance issues..77

OutOfMemoryError..77

OutOfMemoryError: PermGen space...77

Logging in production...77

Performance logging..77

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 8 of 77

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 9 of 77

Introduction

The XML Gateway should run on any Java servlet engine however we
recommend Apache Tomcat (from the Apache Foundation). The Tomcat
download page is here: http://tomcat.apache.org/index.html

You require a Tomcat installation for your platform and we recommend the
latest 6.0 server.

The XML Gateway requires a Java 1.5, however we recommend the latest
1.6.

If you are in any doubt what to download, please contact JSS Support. You
will need to install the Java SDK before you proceed to install Tomcat and
the XML Gateway.

We do not provide a guide on how to install Tomcat as there are hundreds
of guides on the Internet, and BMC automatically install Tomcat with the
Mid Tier.

AR System, SQL and LDAP integrations

The gateway provides integration features for SQL databases and LDAPs,
however this manual currently focuses on the most common
implementation – AR System integrations. You will find examples of
SQL/LDAP integrations as the techniques are similar to AR System, with
small variations in the template structure.

Videos

There are a range of videos on the JSS website that demonstrate how to
install and use the gateway – these are a valuable source of information
so please take a few minutes to review them.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://tomcat.apache.org/index.html

JSS XML Gateway Installation and usage - Page 10 of 77

Installing the XML Gateway

The XML Gateway is shipped as a WAR file. Tomcat's administration
console provides a mechanism to install the war file, as do other servlet
engines. With Tomcat, it's just as quick (if not quicker) to install the war
file manually. The steps are written for Windows (we assume Unix users
will have no problem following them) and are as follows:

1. Copy the XML Gateway WAR file to the [Tomcat Directory]\webapps.

2. Start Tomcat, which can be done through Windows Services.

3. Tomcat will find the new WAR file and unpack the contents into a
new directory with the same name as the WAR file. Wait until this
appears then test by opening your browser and type http://
[servername]:8080/xmlgateway. If the installation was successful
then you will see the XML Gateway welcome page, with a message
requesting a license.

4. If you have a production license key, copy it to the [Tomcat
Directory]/webapps/xmlgateway/WEB-INF/classes directory. If you
are evaluating the product then the gateway will be limited to 100
transactions per hour.

5. Re-start Tomcat and go back to the welcome page, you can start to
use the system.

Installing the XML Gateway and the Mid Tier together

If you wish to install the XML Gateway with another product running in the
same servlet engine that uses AR System (such as the Mid Tier) then there
may be an issue with the 'shared' use of the AR API. Older versions used
native libraries, and while these were dropped in version 7.5 (for the AR
API – they are still required for CMDB), there may be issues when mixing
applications using the AR API. If you have any problems or concerns then
contact JSS Support.

CMDB support

The XML Gateway has a number of CMDB features for creating and
modifying CMDB classes. The CMDB API (at least, on version 7.5) still
makes use of native libraries, so if you intend to use this functionality of
the gateway then you must install the native libraries on your machine.
They are not shipped with the gateway so contact JSS Support if this is a
requirement.

Please do not confuse operations on CMDB classes with
operations on CMDB data – out of the box, the XML Gateway can
manipulate CMDB data as this is performed through the AR API.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 11 of 77

Background and required knowledge

The gateway is designed to provide a more complete solution to
integrating with the BMC AR System than the out of the box webservices.
The out of the box webservice implementation has a place in integration,
but they are by far a complete solution – for example, they don't handle
attachments, provide no facility for handling errors, and if your client
wishes to a messaging solution (such as Tibco of Weblogic), an entirely
different technology is required.

The gateway provides a comprehensive XML messaging hub with a range
of connectors, specifically designed around the AR System, as opposed to
the majority of other products that provide AR System integration where
the AR System was an 'after thought' (hence, the feature set is smaller
and less reliable).

XPath

The gateway makes heavy use of XPath to manage data within XML. You
can read more about it on this wiki page:

http://en.wikipedia.org/wiki/XPath

There are many tutorials on the Internet and we recommend you read the
one on w3schools:

http://www.w3schools.com/Xpath

The gateway makes use of the Saxon XPath libraries and the
documentation is worth reviewing. In particular, the following URL
provides a list of functions you can use when writing create/modify
templates:

http://www.saxonica.com/documentation/functions/intro.html

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://www.saxonica.com/documentation/functions/intro.html
http://www.w3schools.com/Xpath
http://en.wikipedia.org/wiki/XPath

JSS XML Gateway Installation and usage - Page 12 of 77

Getting started, quickly

This guide assumes you've configured a AR System instance with the alias
myarserver (through the xmlgateway.xml file).

Creating a new AR System user through an XML post

We supply a sample template called newUser.xml and it can be found in
the
[tomcat]/webapps/xmlgateway/WEB-INF/classes/templates/createModify
directory. If you open the template in a text editor, you will see that the
comments at the top provide some sample XML to post into the gateway.

To post the XML into the gateway, go to the test post page; paste the
sample XML from the template (at the top, in comments) into the top text
field; enter newUser in the template field; select myarserver from the data
source drop down and press the process XML button.

You will now be taken to the statistics page and should see that one new
entry was created in the User form.

Performing a query against an AR System database

We supply a sample query template called sampleQuery and it is installed
with the product in the
[tomcat]/webapps/xmlgateway/WEB-INF/classes/templates/queries
directory. This is a very simple query template and returns only a few
fields, but also demonstrates some of the more advanced gateway
features such as date formatting. To perform a query against a data
source, an XML query must be passed to the gateway and a sample one is
provided at the top of the template.

To run this example, go to the test query page; post the sample XML query
request from the template (at the top, in comments) into the first text
field and press the process XML button.

Modifying an AR System user through an XML post

Repeat the process you followed when creating the xmlgwtest user but
before pressing process XML button, modify one of the text values in the
sample XML you are about to post. We suggest you change the Full Name
from XML Gateway Test to something else. Now press the process XML
button.

You will now be taken to the statistics page and should see that one entry
was updated.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 13 of 77

Configuration files

Once you’ve successfully installed the gateway, you will also need to
review the configuration files to setup your AR System/SQL
server/Directory Services/etc.

The configuration files are all located in the
[tomcat]/webapps/xmlgateway/WEB-INF/classes directory.

However, to make the XML Gateway upgrade path easier, all configuration
files are loaded from the classpath and therefore they can be present in
any directory present on the JVM classpath. For example, you may wish to
add a directory /xmlgateway-config to the classpath and store your
configuration files in this directory, or if you're using Tomcat, you may
wish to use the tomcat/common/classes directory as your storage
location.

It is of course entirely optional and new users can simply edit the existing
files.

When you make changes to the configuration files you must also
restart the gateway.

The following list provides an overview of the configuration files:

• xmlgateway.xml: The main XML Gateway configuration file which
includes configuration of AR System server instances.

• databases-context.xml: All SQL databases are defined within this
file.

• directories-context.xml: All directory services are defined within this
file.

• templates/createModify: Directory containing user defined
create/modify templates.

• templates/queries: Directory containing user defined query
templates.

• schemas: Directory containing schemas used by the templates.
• xmlgateway.license: Your XML Gateway license file for those who are

not evaluating/running the community edition.
• messageSending.xml: The message sending framework

configuration file.
• scheduler-context.xml: The gateway's inbuilt Quartz scheduler is

defined in this file. You can also configure scheduled jobs to run,
such as performing a query and posting the results to another XML
Gateway server.

• jms-core.xml: The JMS core configuration, which defines
connections, destinations, queues, etc.

• jms-jobs.xml: JMS message listeners are defined in this file. These
listeners bind to a queue and perform create/modify or query
operations.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://www.opensymphony.com/quartz/

JSS XML Gateway Installation and usage - Page 14 of 77
Primary configuration file – xmlgateway.xml

The following items are configured through the xmlgateway.xml. Do not
forget that any changes to the file will not be reflected until you restart
the Tomcat server.

logLevel: The level of logging that will be performed. This should be set to
INFO for production environments, and DEBUG or TRACE if you wish to
send log files back to JSS. Logging can be sent to a database as described
below.

emailFromAddress: When the XML Gateway sends an e-mail to signal a
processing error, the from address of that e-mail is configured here.

attachmentKeyExpirtyTime: The amount of time that keys generated by
the attachment query system will remain valid. I.e. attachment URLs
generated by the query system should be accessed within this period of
time.

cacheRefreshInterval: The number of minutes that the internal AR System
object cache will persist. It is rebuilt at these intervals.

cachedFormFieldSets: Retrieving AR System form definitions is very slow,
hence this configures the number of forms to cache.

cachedAttachments: The number of AR System API Attachment objects
that will be cached while performing a query. Queries against attachment
fields result in the attachment being held in memory for the client to
collect via a subsequent request.

responseBuilder: Bespoke response builders can be written for the
gateway, and this tag is used to define a system wide response builder.
The response builder is an implementation of an interface within the XML
Gateway library files called
com.javasystemsolutions.xml.gateway.responses.XMLGatewayResponse.

databaseLoggerSQLServer: XML Gateway logging can be written to a
database table by passing an SQL server definition (discussed below) to
this tag. This provides an easy mechanism of producing XML Gateway
reports, given selecting from a table is much easier than parsing a file.
The logs will still be sent to a file.

maximumQueryCount: A global maximum query count can be defined that
will be used to limit any query performed, however, the figure can be
changed by defining the value in a template.

XPathFactory: Used to configure the gateway to use a particular
XpathFactory. By default, Saxon is used, however if you wish to use the
standard Java Xerces implementation then this is documented in the
configuration file.

TransformerFactory: Used to configure the gateway to use an alternative
TransformerFactory. By default, Saxon is used, however if you wish to
include Java extensions into XSL templates then you will need to set the

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 15 of 77
standard Java Xalan implementation as per the example in the
configuration file.

Throttling: This feature allows a global throttling limit on transactions
through the product. You can set a period (minute, hour, day) and a
number of transactions. The product will respond with an error to all
requests if this threshold is breached.

AR System servers

AR System connection pooling is performed using the ARAPI connection
pooling functionality, and this can be configured in the arsys_api.xml file
in the xmlgateway/WEB-INF/classes directory.

Inside the ars tag, a number of AR System server definitions can be
defined as follows:

<server name="myarserver" host="192.168.0.54" user="Demo"
password="itsm" tcp="" rpc="" />

States that an AR System server called myarserver (internal XML
Gateway alias) is located at the host 192.168.0.54, and that the login
details (does not have to be admin) are Demo/password. No TCP or RPC
ports are defined.

The definition can also include the following:

1. clientType: This allows the AR API client type to be set. By default, it
is not set on the ARServerUser login call.

Encrypting AR System passwords

When XML Gateway is started, it will print encrypted AR System
passwords in the standard out log file and these values can then be
replaced with their plain text versions within the xmlgateway.xml file. Here
is an example log entry detailing an encrypted password:

20:00:39,993 INFO (config.XMLGatewayConfiguration:encrypt:822)
localhost-startStop-1 - AR System user Demo's password p@33word in
the xmlgateway.xml file can be replaced with
enc_VlHnXgAXZU2pI8/jJVoTvg==

HTTP create/modify bindings

In order for third party clients to be able to post XML to the gateway
without sending any parameters (i.e. stating the template or server
required), you can bind an IP address to a template and server pair using
the map tag.

For example:

<httpCreateModify>
 <map source="192.168.0.2" template="newUser"
server="myarserver" />
</httpCreateModify>

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 16 of 77
States that connections to the /pushxml/createmodify.do servlet or
webservice post function, from the IP 192.168.0.2, will result in the
newUser template being used against the AR System alias myarserver.

You may be expecting to see the same feature for the query interface (as
in legacy XML Gateway deployments), but an XML based query request
contains all the information required to query AR System and hence no
further configuration exists.

File fetchers

The XML Gateway can retrieve create/modify XML requests from files
(ending in .xml or .csv) by scanning a directory at a defined interval. To
set up this functionality, define a fileFetcher tag as follows:

<fileFetcher directory="/tmp" targetServer="myarserver" interval="5"
template="newUser" />

Intervals are interpreted as minutes. No XML response is provided when
processing files. You can optionally set a targetDirectory attribute where
files will be moved when they have been successfully processed.

POP3 fetchers

The XML Gateway can retrieve create/modify XML requests from POP3
mail boxes. To set up this functionality, define a pop3Fetcher tag as
follows:

<pop3Fetcher mailServer="localhost" user="user" password="password"
targetServer="myarserver" interval="5" template="newUser" />

Intervals are interpreted as minutes. No XML response is provided when
processing XML sent via e-mail.

All POP fetchers will run as soon as the system starts, and will then run at
their defined interval until the system shuts down. Please note that
messages retrieved from the POP3 mailboxes are deleted upon retrieval,
and therefore we recommend you send all XML messages to two
mailboxes; one which the system uses, and one which forms your backup.

The POP fetchers also use a system of document queueing if the AR
System server can not be contacted. When the fetcher runs at on it's
predefined interval, it will check to see if there are documents in the
queue and if so, process them before it processes any new documents
from the mailbox. When documents are reprocessed, they are excluded
from all statistics generated. This behaviour would be useful in a situation
where the AR System server is rebooted for some reason, at a time when
the system wishes to process new documents. In this event, they will be
held in the queue indefinitely until the AR System server becomes
available.

Please note: JavaMail sometimes has problems connecting to the host
'localhost', so please use 127.0.0.1 as the POP3 server instead.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 17 of 77
Logging to a database

The XML Gateway can write log information to any SQL database by
adding a table (detailed below), setting up an SQL server definition (see
SQL datasources) and providing the name of that SQL server definition in
the databaseLoggerSQLServer directive within the xmlgateway.xml file.

The SQL for creating the database table is as follows:

CREATE TABLE log (
level integer NOT NULL,
logger varchar(64) NOT NULL,
message varchar(255) NOT NULL,
lineNumber varchar(10) NOT NULL,
sourceClass varchar(64) NOT NULL,
sourceMethod varchar(32) NOT NULL,
threadName varchar(64) NOT NULL,
timeEntered datetime NOT NULL

);

If the connection to the database is broken while the gateway is running,
it will attempt to reconnect, although some log messages are likely to
have been lost.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 18 of 77

Creating, updating and deleting records

This functionality is collectively referred to as 'create/modify' and is
accessible by posting to the gateway.

Location of templates

The default templates are located in the following location:

xmlgateway/WEB-INF/classes/templates/createmodify

Templates are loaded from the classpath and can therefore be located
anywhere on the classpath within the templates/createmodify directory
structure.

Performing your first transaction

The gateway ships with a number of sample templates and the
newUser.xml template will run with any AR System instance – it creates or
updates an entry in the User form. To execute the template:

1. Go to the gateway console.

2. Click on 'Interact' and 'Post'.

3. Select the newUser template, click 'Fetch example' and press 'Post
XML'.

The browser should now show the results of the post, which is an XML
response. This will indicate whether the record in the User form was
created or updated (the template was configured to look for an existing
user), or if an error occurred. If a record was modified then the entry ID is
returned.

Template structure

Start by opening the newUser.xml template in a text editor. The following
is a break down of what's contained within the newUser template and
hence when reviewing the examples, you should refer to the sample XML
detailed in the section above.

Please note, both field IDs and names can be used when defining
rules within the templates.

The root node

<createModify>

The root node of a create/modify template.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 19 of 77
Transaction ID

This is an optional directive and mentioned here as it's used in the
example.

<transactionID>/newuser/transactionID/text()</transactionID>

The location of the transaction ID. If you wish to pass a value in and out
of the gateway – i.e. when you are dealing with many transactions – this is
set through the transaction ID directive. You can see the transaction ID in
the XML we posted above, and you will have seen it in the XML response.

Email on error

This is an optional directive and mentioned here as it's used in the
example.

<emailOnError>xmlgwerror@javasystemsolutions.com</emailOnError>

An e-mail address to contact if an error occurs processing when the
gateway processes a request with this template. Please note, to use
e-mailing, you must setup a mail server in the applicationContext.xml
configuration file.

Form definitions

<formDefinition returnFields="1,8">

The form definition specifies the start of a block of instructions to process
the input XML and perform operations on an AR System form. You can
have as many form definitions as you require and any form definition can
use any XML from the input. This enables multiple forms to be updated
through one transaction.

The returnFields attribute allows field values to be returned from an entry
after a transaction. If you do not include returnFields, the default is the
entry ID.

The directive also accepts an options attribute which is used to
pass various configuration options, some of which are data source
dependent. They are as follows:

• removeDuplicates: If a form definition generated duplicate entries
then duplicates will be removed. If a form definition uses the
setFieldToUID directive then these will be ignored when calculating
duplicates.

Target object (setting the form)
<targetObject>User</targetObject>

The name of the form to be used by the form definition. You can only
define one of these within a form definition.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
mailto:xmlgwerror@javasystemsolutions.com

JSS XML Gateway Installation and usage - Page 20 of 77
Set field
<setField target="7">0</setField>

The setFIeld directive will set a field (by ID, but you can use names too)
with a pre-defined value. When creating new entries in the AR System,
some fields require default values and hence when designing a form
definition, you may need to define them if your workflow does not do it for
you.

The values are set regardless of whether an entry is being created or
modified.

Setting a field to null

To set a field to null, use the setGatewayValue directive.

Conditional behaviour

In the event the setField should not always be performed, a condition
attribute can be supplied with an XPath that must evaluate to true if the
field should be set, ie.

<setField target="name"
condition=”data/gender='female'”>female</setField>

The XPath expression passed as the condition can either be relative to the
selected node or root node if it commences with /.

Field mapping
<fieldMapping target="109" defaultValue="0">
 <map from="Read" to="0" />
 <map from="Fixed" to="1" />
 <map from="Floating" to="2" />
</fieldMapping>

In the event you need to translate the input data, you can define a
mapping. This is applied to the field defined in the fieldMapping element
and the mappings are defined as child elements. If no mapping matches
the input value then an optional default value can be defined, and if not
defined then the input value is set on the field.

Setting a field by an XPath query
<setFieldFromXPath target="101"
expression="/newuser/loginName/text()" />

This directive is used to extract a value from the input XML and set it on a
field using an XPath expression. This is one of the most common
directives you will use to build your integration templates.

Setting a field to null

The AR System API will set a field to null when an empty string is passed,
so if the expression evaluates to an empty String, this will be set in the
field.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 21 of 77
However, in the event of the API behaviour varying, you can specify the
attribute emptyIsNull to set a null value in a field if the string has no
length:

<setFieldFromXPath target="name" expression="data/name”
emptyIsNull=”true” />

Conditional behaviour

In the event the setFieldFromXPath should not always be performed, a
condition attribute can be supplied with an XPath that must evaluate to
true if the field should be set, ie.

<setFieldFromXPath target="name" expression="data/name”
condition=”data/gender='female'” />

The XPath expression passed as the condition can either be relative to the
selected node or root node if it commences with /.

Importing attachments
It is possible to load attachments into AR System attachment fields but an
additional directive (attachment) is required to provide additional
information.

The following example shows how to download the contents of a URL into
an attachment item field with ID 536880912.

<attachment target="536880912" type="url" />
<setFieldFromXPath target="536880912"
expression="/newuser/picture/text()" />

The attachment directive works alongside a setFieldFromXPath directive.
The setFieldFromXPath directive provides the location for the value used
by the attachment directive. The attachment can be set in three ways:

1. By passing a URL in the XML. This is the easiest way to get an
attachment into the AR System and to do this, set the attachment
type attribute to url.

2. By passing base64 encoded in the XML. For small attachments, you
may wish to pass base64 encoded values in the XML. To do this,
set the attachment type to base64.

3. By passing plain text in the xml. To do this, set the attachment
type to plain.

4. By passing the attachment through a SOAP header as a MIME
attachment through a webservice call to the gateway (this is an
advanced option). The attachments passed in this fashion are
matched against XML elements by the MIME content ID. The
gateway can also accept filenames in content IDs using the syntax
cID;filename (the XML must still contain just the cID).

The newUser.xml example includes an attachment example that is
commented out. To enable it, uncomment the relevant section and post

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 22 of 77
an XML sample that includes a picture element (a sample is included at
the top of the template), i.e.:

<newuser>
 …
 <picture>http://www.javasystemsolutions.com/roland.jpeg</picture>
</newuser>

The attachment directive accepts a number of other attributes:

1. The filename attribute is used to specify the filename which will be
used for the file created in the attachment. If no filename is present
then the filename is taken from the URL or MIME attachment. If no
filename can be determined then a temporary one will be assigned
by the gateway.

2. The filenameXPath attribute is used to specify an XPath that will be
evaluated to retrieve a filename from the input XML. If no filename
is retrieved then the default mechanism (as specified in filename
above) will be used.

3. The compression attribute is used to specify whether the
attachment should be automatically decompressed. Currently, only
gzip is supported. This allows a third party system to gzip
attachments to reduce the amount of data passing over a network,
before the attachment is decommpressed and pushed into the
attachment field. If the filename ends in .gz then this will be
stripped off.

Do not forget to specify the field ID of the attachment item, and not the
attachment pool! To find the item field ID, view the form in the admin tool,
double click on the item and go to the database tab.

Controlling the create/modify/delete functionality
<query>'101'="101"</query>
<updateStrategy>UPDATE_OR_CREATE</updateStrategy>

The query and updateStrategy directives are configured to control create,
modify and delete operations – i.e. you can tell the gateway to look for an
existing entry and update any matches or create a new one if there's no
match, or only create, or only update, etc.

The query is a standard AR System query that can include x place
holders that refer to fields set while processing the form definition. In the
example above, a query will be executed for entries where field 101 is set
to the value of field 101 as returned from the input XML. To recap, the
following setFieldFromXPath was defined:

<setFieldFromXPath target="101"
expression="/newuser/loginName/text()" />

Therefore the value returned from the XPath expression
/newuser/loginName/text() will be put in place of 101 before the query
is executed.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 23 of 77
The updateStrategy sets the operation to be performed. The possible
values are as follows:

1. UPDATE_OR_CREATE: This is the default behaviour of a query. The
query will be executed and entries returned will be updated, and if
none are returned then one will be created.

2. UPDATE_ONLY: If the query returns entries then they will be updated,
however if no entries are returned then no further action is taken.

3. CREATE_IF_NO_MATCH: A create will be performed if no matches
were returned by the query. If results were returned then no action
is taken.

4. CREATE_ONLY: A create will be performed (no query directive
required).

5. DELETE: When using an AR System source, entries matched will be
deleted. Use with care! You may wish to consider an alternative
system of deleting entries involving a flag (set via an update) and
an AR System escalation.

Performing multiple operations with a single formDefinition

The form definition within the newUser is only executed once. It will be
more common to write a form definition that deals with many subsections
of the input XML. This is achieved by setting the parentPath attribute to
the form definition and this example refers to the newUsersAndGroups
create/modify example template:

<formDefinition parentPath="/newusers/newuser">

This will cause the gateway to perform an XPath select on the input XML,
and for each newuser element it finds, the form definition will be
executed.

When doing this, the XPath directives within the form definition would be
defined using relative expressions, such as:

<setFieldFromXPath target="101" expression="loginName/text()" />

This will result in the text under the loginName element for the current
newuser element being set on field 101.

For example, consider the following XML (taken from the
newUsersAndGroups template):

<newusers>
 <newuser>
 <loginName>xmlgwtest</loginName>
 ..
 </newuser>
 <newuser>
 <loginName>xmlgwtest2</loginName>
 ..

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 24 of 77
 </newuser>
</newusers>

The form definition will result in the XPath expression /newusers/newuser
being executed, which will return two newuser elements. Each contains a
set of child nodes including a login name, and hence with the directives
within the form definition referring to relative elements (i.e. the login
name in question), each time the form definition is executed (with a
different newuser parent node), a different set of data will be extracted
and used in the subsequent query/operation.

The newUsersAndGroups example provides a thorough example of how
form definitions can be executed multiple times by showing how to
create/update multiple users and groups through one template.

Field limits

AR System allows for limits to be placed on fields, such as the maximum
length of a field or a number range. If a value is submitted outside this
range, an AR API exception is thrown. To avoid such exceptions, XML
Gateway:

1. Trims string values to ensure they fit within the limit of a character
field.

2. Sets values to be placed into a number field to the minimum or
maximum value if a limit is set and the value falls outside the range.
If the input value does not parse to a number, null is set on the field.

Field type conversion

A number of conversions are performed when data is set in various field
types. If the target field is:

1. Diary, add a new item to the diary.

2. Date, use the template defined date format or the standard XML
date format yyyy-MM-ddTHH:mm:ss, or either format when split by
the T.

3. Enumerated, try matching the input value by an enumerated item
name.

4. Currency, either:

1. A value with the format “123 GBP” is detected and converted to
a value and the current time.

2. A value with the format “123” is detected and converted to a
value using the default currency and the current time.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 25 of 77
XML responses to create, modify and delete transactions

The XML gateway will return an XML document to provide information on
entries created, modified or delete. After a successful transaction, the
following is returned by the gateway:

<success>
 <object name="User" transactionID="ABC123">
 <change operation="created">CHG00123</change>
 <change operation="updated">CHG00234</change>
 <change operation="deleted">CHG00237</change>
 <error>Error description</error>
 </object>
</success>

The error elements are provided when the template is configured to
'resume on error'.

The following three responses will be returned by all operations to provide
error messages:

• A server alias was provided that is not configured in the gateway:

<failure><serverNotFound>theGivenServer</serverNotFound></failu
re>

• Internal exception:

<failure><exception>Exception message from the
transaction</exception></failure>

• If no operations result from the processing of XML:

<failure><noTransactionsPerformed /></failure>

These responses are provided by the servlet, web services of Java
Messaging Services. All failure messages will include resend="true" as an
attribute of the failure node if the data source was unavailable (indicating
the message can be resent later).

Additional operations

The newUser example only demonstrated a subset of the functionality
available when writing create/modify templates.

dateFormat

<dateFormat>yyyyMMdd</dateFormat>

This allows you to override the standard date format for all
date/datetime/timestamp fields. By default, the XML gateway will decode
standard XML formats, such as:

• yyyy-MM-ddZ: Date.
• HH:mm:ssZ: Time.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 26 of 77
• yyyy-MM-ddTHH:mm:ssZ: Date/time.

The date format can also be extracted from the input document using an
XPath expression:

<dateFormat xpath=”/path/to/date/format” />

The date format syntax can be found in the Java documentation.

timezone

<timezone>America/Los_Angeles</timezone>

This allows a timezone to be specified when parsing dates using a define
date format (above).

The timezone can also be extracted from the input document using an
XPath expression:

<timezone xpath=”/path/to/timezone” />

The timezone IDs can be found under the TZ column in this wiki page.

queryFieldFromXPath

This allows you to set field IDs from XPath expressions, but only for use in
the query. i.e. if you want to use part of the incoming XML document in
the query, but not set it on a target field when an entry is created or
updated, use this directive as follows:

<queryFieldFromXPath target="123"
expression="/newuser/fullName/text()" />

Which would result in 123 within the query being replaced with the
result of the XPath expression /newuser/fullName/text().

setFieldFromQuery

While creating, modifying or deleting an entry, you may wish to look up
data from another object in the data source. The setFieldFromQuery
directive allows you to search for data using a query and optional
parameters.

The example below performs the following operations:

1. Queries the User form.

2. Extracts the value under the loginName node and maps it to field
101 (within only the setFieldFromQuery).

3. Executes the query defined in the query tag, replacing x with
values extracted using the param directive(s).

4. If an entry is returned from the query, field 8 is returned and set on
the target field (103) within the current field set of the field
definition.

<setFieldFromQuery target="103">

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

JSS XML Gateway Installation and usage - Page 27 of 77
 <source>User</source>
 <param name="101" expression="loginName/text()" />
 <query>'101' = "101"</query>
 <return>8</return>
</setFieldFromQuery>

The expressions defined in the param directive adhere to the
relative/absolute rules.

If more than one entry is returned from the query, the first entry is used to
retrieve the return value.

Please note: This operation will run a query for every element processed
by the parent form definition, so if the form definition matches 20
elements within the input XML, 20 queries will be run. This could have a
significant impact on performance so use with care.

onError

<onError>RESUME</onError>

If your form definition has defined a parentPath, and the system finds a
list of matches (and hence, will perform multiple create/modify/delete
operations), this option states how the system should behave on an error.
The valid values are HALT or RESUME, i.e. resume processing further
entries, or halt processing matches for the current form definition and
move on to the next one (if applicable).

If no onError directive is defined then HALT is used.

Please note that when RESUME is used then errors will be provided with
the <success> XML response, and no <exception> response will be
produced in the event of an error.

setMessage

<setMessage target="123" />

This directive allows you to set the entire message into a (text) field. If
you are using a filter and wish to store the message before it was filtered
(i.e. a raw Swift message) then set the attribute raw to true.

setGatewayValue

<setGatewayValue target="123" value="jmsid" />

This directive sets a field from the gateway, such as the IP of the
connecting client or the JMS Message ID. If the value is not available or
understood then the field remains unset. The optional restrictions
attribute is used to control when the value should be set and can take two
values: createOnly and updateOnly.

Values are as follows:

• remoteip: The IP address of the client (if available, i.e. not JMS).

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 28 of 77
• jmsid: The JMS Message ID.
• null: Set field to null.
• uid: Set field to unique identifier.
• datenow: Set the current date/time.

secure

<secure />

If you wish to force users to authenticate before they can make use of a
template then the secure directive must be provided.

When templates have been secured, users will be required to authenticate
using the /authentication/authenticate.do servlet, and an authentication
will be required for each server a user wishes to access. The servlet works
by providing the client with a session ID cookie, and that cookie must be
presented on each subsequent request whether through HTTP or
webservices.

When an AR System template is marked as secure, and authentication is
required, subsequent operations will be executed as the user who has
authenticated, and not using the credentials assigned in the relevant
server configuration. However, this differs slightly to the behaviour of a
directory service template which will still perform operations with the
credentials defined in the server configuration.

You can see how the authentication system works by looking at the test
page, where a login example is provided and functions correctly with the
create/modify and query test harnesses.

This functionality is unsupported with Java Messaging Services.

Using AR System groups
The secure directive can be configured with one or more semi-colon
separated AR System group names, ie.

<secure groups=”Incident Master;Incident Config” />

If an authenticated user is not in one of these groups, they
will not be able to use the template.

schema

<schema>mySchema.xsd</schema>

You may wish to use an XML schema to validate incoming XML. Schema
will be sourced from the xmlgateway/WEB-INF/classes/schemas
directory. You must enter the full filename, including extension. If you do
not use a schema then the incoming XML will be accepted if it valid XML.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 29 of 77
namespaces

If the incoming XML document makes use of namespaces then they must
be declared using the following syntax:

<namespaces>
 <namespace prefix="pr1" url="http://www.whatever.com/1.xsd" />
 <namespace prefix="pr2" url="http://www.whatever.com/2.xsd" />
</namespaces>

Saxon vs Xerces
We recommend you use the Saxon XPath implementation (configured in
xmlgateway.xml and the default) because it's modern and provides a
range of features above Xerces, such as a wider range of XPath functions.

However, while standards compliance is a positive point for Saxon and
some users, others want the quickest solution to a problem. When using
the Xerces parser, if the incoming XML document contains namespaces,
they can be ignored by Xerces: Saxon doesn't offer this feature.

When Xerces is enabled, if no namespaces have been defined in the
template, Xerces is instructed to ignore namespaces in the incoming XML
document when executing XPath expressions.

If your XPath expressions contain namespaces then they will fail because
the namespaces must be defined, but if you are defining namespaces in
XPath expressions then adding namespace declarations is no additional
effort.

responseBuilder

This feature allows one to write their own response builder in Java, by
implementing the interface
com.javasystemsolutions.xml.gateway.responses.XMLGatewayResponse
(found in the XML Gateway library files, ie xmlgateway.jar).

The compiled class must be in the classpath for the gateway, and to use
this feature simply define the fully qualified classname in the
responseBuilder directive. For example:

<responeBuilder>
com.mycompany.xmlgateway.CustomResponseBuilder
<responseBuilder>

filter

This feature enables one of the inbuilt filters that are used to translate an
input stream into an XML Document - hence, allowing any data to be
submitted to the gateway and converted into XML before being processed.
The following standard filters exist within the gateway:

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 30 of 77
CSV
The CSV filter will translate a CSV document into an XML document with
the following structure:

<root><row index="0">
 <col index="0">Data</col>
 <col index="1">Item</col>
</row><row index="1">
 <col index="0">Data</col>
 <col index="1">Item</col>
</row></root>

Each row and/or column can be uniquely identified by the index attribute.

JSON
The JSON filter will translate text formatted as a JSON string into an XML
document that can then be posted to a template. This isn't a perfect
process as it's difficult to convert pure JSON into XML without further
information, such as inventing a notation for setting XML attributes
instead of elements and text content. The real benefit of this filter is the
output/query functionality, converting XML to JSON.

Swift
The Swift filter will translate standard Swift messages into an XML
document with a fairly complex structure. To view the structure we
recommend you go to the 'Test filters' page on the web interface, insert a
raw Swift message and look at the output of the filter.

An AR System 'def' file has been provided along with a template
(swiftMessage.xml) that will allow you to push Swift messages into the AR
System.

filter-class

Bespoke filters can be written by implementing the filters interface. To use
your own filter, simply provide the classname in this directive.

Impersonating a different AR System user

The AR API contains functionality to impersonate a user, available to
connections using an account with administrator privileges. If you wish to
use this functionality, you can point to a username in the input XML using
the following syntax:

<impersonate>/path/to/user</impersonate>

Checksum

Create a checksum from a set of input values, allowing updates to be
dropped if the data within the database is the same as the incoming data.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://www.javasystemsolutions.com/xmlgateway/docs/developing.jsp.html#filters
http://www.swift.com/
http://en.wikipedia.org/wiki/JSON

JSS XML Gateway Installation and usage - Page 31 of 77
The checksum is generated using a gateway XPath function in conjunction
with the checksum directive. A template called newUserChecksum.xml is
included with the gateway and this example is taken from it:

<checksum field="checksum"
expression="jss:checksum(/newuser/checksumvalue1/text(),/newuser/che
cksumvalue2/text())" />

In this example, the field called checksum will be checked before an entry
is updated, and if the existing value is identical to the new checksum
value (generated from the values retrieved from the two XPaths), the
update will not be performed.

You can specify any number of XPaths in the checksum function.

Functions

XPath provides a range of functions and Saxon implements many of them;
a good resource can be found here:

http://www.w3schools.com/Xpath/xpath_functions.asp

However, the gateway provides a number of functions to provide more
bespoke functionality. They are detailed below.

Checksum

Create a checksum from a set of input values as described above.

Encrypt

Encrypt the value before setting on the input field. The value can be
decrypted using the query option decrypt.

The following provides example usage:

<setFieldFromXPath target=”fieldName”
expression=”jss:encrypt(/path/to/node/text()” />

Throttling

This feature allows a template based throttling limit. You can set a period
(minute, hour, day) and a number of transactions. The product will
respond with an error to all requests if this threshold is breached. The
following example demonstrates usage:

<throttling maxTransactions="2" period="minute" />

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://www.w3schools.com/Xpath/xpath_functions.asp

JSS XML Gateway Installation and usage - Page 32 of 77

Querying the AR System

This functionality is accessible by posting to the gateway through the test
interface, as well as through webservices and JMS.

There is a graphical query template designer available through
the gateway portal and we recommend you use this to build
query templates.

Location of templates

The default templates are located in the following location:

xmlgateway/WEB-INF/classes/templates/queries

Templates are loaded from the classpath and can therefore be located
anywhere on the classpath within the templates/queries directory
structure.

Performing your first transaction

The gateway ships with a number of sample templates and the
sampleQuery.xml template will run with any AR System instance – it
queries the User form. To execute the template:

1. Go to the gateway console.

2. Click on 'Interact' and 'Query'.

3. Select the sampleQuery template, press the fetch example button
and then press 'Perform query'.

The browser should now show the query results presented as an XML
document.

Query requests

To perform a query against XML Gateway, an XML structure (called a
query request) is the most common approach. It specifies the template,
configuration key, and optionally search criteria (to override that defined
in the template), date format and time format.

Example templates contain examples within the exampleInput directive.
For example, this will run the complexQuery template, with configuration
key 2, specifying a date and time format:

<query type="ars">
 <template>complexQuery</template>
 <configKey>2</configKey>
 <dateFormat>dd-MM-yyyy HH:mm:ss</dateFormat>
 <timezone>Europe/London</timezone>
</queryTemplate>

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 33 of 77
Template structure

Start by opening the sampleQuery.xml template in a text editor. The
following is a break down of what's contained within the sampleQuery
template and hence when reviewing the examples, you should refer to the
sample XML detailed in the section above.

Please note, both field IDs and names can be used when defining rules
within the templates.

The root node

<query type="ars">

The root node of a query template. The type ars declares the template as
one that connects to AR System server datasources.

Search criteria

<configuration>
 <user key="userFormSearch">
 <searches><search>
 <server>myarserver</server>
 <form>User</form>
 <maxResults>2</maxResults>
 </search></searches>
 </user>
</configuration>

The configuration block holds a set of different configurations for the
template, and each one contains a list of searches. Each configuration is
referred to by the <user key=”xx”> element.

Please note, the <user key=”xx”> is poor terminology and will be
reviewed in a future version of the gateway.

When a query request is processed, the configuration is retrieved and the
searches executed in sequence until one matches – the results of this
search are used to build the XML response. This functionality allows
developers to build multiple types of searches into one template, for
example, there may be two forms holding user data and the developer
may wish to search both to provide the result set.

Each search can contain pre-defined values, and if not defined then they
must be presented on the request. The pre-defined value will always
take precedence over a value submitted in the query request. The
following values can be defined:

1. server: The name of the AR System server.

2. form: The name of the form to query.

3. query: A query string to execute.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 34 of 77
4. maxResults: The maximum number of results to return, set on the

AR API call.

5. startRow: Return results from this row number.

6. endRow: Return results up to this row number.

7. sorts: The results can be sorted and this is described below.

Specifying the XML response template

<responseXPath rootExpression="/query/sample"
 resultExpression="/sample/result" />

This directive tells the gateway where to find the template XML response
within the query template by providing two XPaths:

• rootExpression: This is relative to the root node and points to the
node that will be used as the root of the XML response.

• resultExpression: This is relative to the root of the XML response. It
will be recursively copied for each result.

The directive also accepts the transactionIDExpression attribute which is
an XPath expression that selects a node for the transaction ID. This is
optional and ties in with the transactionID given in an XML based query
request.

Specifying a result field

<result field="7" expression="status" options="toText" />

This tells the gateway to place the value for field 7 under the Xpath
specified in the expression. The expression is relative to the
resultExpression defined in the responseXPath. The directive
accepts the following attributes:

• field: Field or column to be retrieved from the current result set.
• expression: XPath expression of value to set in response, relative

to the result root, defined in the resultXPath directive.
• options: The options attribute is used to pass various configuration

options:
◦ attachmentName: If the field is that of an attachment then this

option will set the name of the attachment at the given
expression.

◦ attachmentLength: If the field is that of an attachment then this
option will set the length of the attachment (in bytes) at the
given expression.

◦ base64: Base64 encode the value, particularly useful for binary
values such as an Active Directory objectGUID.

◦ cdata: This option will result in the output data being wrapped in
a cdata element.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 35 of 77
◦ decrypt: Decrypt a value if it was encrypted when pushing it into

the AR System. See the create/modify encrypt option.
◦ epoch: This option can be used when outputing date/time fields.

Instead of the date being formatted as a string, it will be output
as the number of milliseconds since 1970 (the epoch value).

◦ removeControlCodes: This option removes control codes that
may be present in a value before it is inserted into the XML
document. Control codes are not valid in the XML 1.0
specification yet some DOMs (such as Saxon) do not remove
them, and the output can then break parsers (such as the one in
Firefox or Chrome). There is a small performance hit to using
option so only use it when necessary.

◦ replace: The node referenced by the result expression will be
removed and replaced with the text. This is useful when you
want to use nodes to act as place holders for text.

◦ toText: This option can be used on various field types in order to
convert an internal AR System numeric value into the string
equivalent. The following type conversions are supported:
▪ Drop down menu fields, such as status, result in the

enumerated value being converted to a string.
▪ Group list fields, such as 104, are converted from semi-colon

separated group Ids to semi-colon separated group names.
◦ trim: White space will be removed from the field before it is

output. The trim happens before splitting occurs.
• numberFormat: This attribute can be used on numerical types in

order to format the output. The attribute requires a valid Java
number format.

• dateFormat: This attribute can be used on date, time and date/time
fields in order to convert an internal numeric date into a human
readable date. The attribute requires a valid Java date format. This
will override a value set through the query request.

• timezone: When using the dateFormat attribute, the timezone can
be used to force the date to be rendered in a particular timezone. If
not provided then the machine timezone is used. If provided but not
understood then GMT is used. This will override a value set through
the query request.

• splitSize: This accepts a numeric value and will result in a string
being split into substrings of a length equal to the given value. The
output node is then cloned for each substring, with each cloned
node being placed directly after the original.

Additional operations

Email on error

<emailOnError>xmlgwerror@javasystemsolutions.com</emailOnError>

http://www.javasystemsolutions.com

http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://www.javasystemsolutions.com/
mailto:xmlgwerror@javasystemsolutions.com
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

JSS XML Gateway Installation and usage - Page 36 of 77
An e-mail address to contact if an error occurs processing when the
gateway processes a request with this template. Please note, to use
e-mailing, you must setup a mail server in the applicationContext.xml
configuration file.

Namespaces

If the query response XML makes use of namespaces then they must be
declared using the following syntax:

<namespaces>
 <namespace prefix="pr1" url="http://www.whatever.com/1.xsd" />
 <namespace prefix="pr2" url="http://www.whatever.com/2.xsd" />
</namespaces>

Securing a template

<secure />

Please refer to the create/modify documentation as the operation is
identical in both processes.

Validating against a schema

<schema>mySchema.xsd</schema>

Please refer to the create/modify documentation as the operation is
identical in both processes, however in query templates, this will validate
the XML response against the schema.

Changing the HTTP content type

<contentType>text/html</contentType>

This directive allows you to change the content type (from text/xml) set on
the HTTP response. You may wish to do this if you've written a template
(and optionally an XSL translation) that creates an HTML page, and you
wish the browser to render as HTML.

Query statistics generated by the gateway

<statistic type="startTime" expression="/sample/startTime" />

The gateway exposes various statistics during the query process and they
can be accessed by using the statistic directive given two attributes:

• expression: XPath expression of value to set in response.

• type: The type of statistic, detailed in the following list:

• startTime: The time at which the query process started.

• endTime: The time at which the query process ended..

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 37 of 77
• numberOfResults: The number of results generated by the

query.

• totalResultCount: The number of results generated by the
query if startRow/endRow had not been provided.

• query: The query executed against the data source.

The startTime and endTime statistics support the optional parameters
dateFormat and timezone, which operate in exactly the same way as they
do on result fields returning dates. I.e.

<statistic type="startTime" expression="/sample/startTime"
dateFormat="hh:mm dd/MM/yyyy zzz" />

Removing elements

<removeElement field="536870934" expression="diary" condition="null"
/>

The removeElement directive can be used to remove nodes from the
response based on a field and condition. It accepts three parameters:

• field: Field to evaluate from current result.

• expression: XPath expression of the node to remove, relative to the
result root.

• condition: The condition on which the node should be removed. The
condition attribute currently accepts two values: 'null' and 'not null'

AR System server info and statistics

<arServerValue field="1" type="info"
expression="/sample/serverInfo/dbType" />

The AR API defines over a hundred server information items, each with a
unique index. You can query these (on ARS query templates) by using the
arServerValue

• field: API field/constant value.

• type: Either info or statistic.

• expression: XPath expression of value to set in response.

Attachments

<attachment field="536880912" expression="picture/link"
baseURL="http://localhost:8080/xmlgateway"
action="view" />

Retrieving AR System attachments can only be achieved through a client
or by writing a program making use of the AR System API. However, the
gateway includes support for attachment retrieval through the query
interface. The attachment directive is used to provide an HTTP link to an

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 38 of 77
attachment, or encode it within the output XML. The following attributes
are used to configure the action:

• field: Attachment field.

• expression: XPath expression of value to set in response.

• action:

• If you wish to encode the attachment into the XML, set this to
base64.

• If you wish to publish an HTTP URL, there are two options
available to you because different HTTP headers must be sent
to a browser to produce the required behaviour.

• If you wish to make the browser either display an image
in a separate window,, then set this attribute to view.

• If you wish to make the browser open a 'save as' dialog
box, set this attribute to download.

• baseURL: This is only relevant when action is set to download or
view and allows you to set the full URL to the gateway application.
Acceptable examples include /xmlgateway (relative) and
http://myserver/xmlgateway (absolute).

When a URL is generated, the gateway generates an attachment 'key' that
must be presented by the client to retrieve the attachment. The lifetime of
this key is configured in the xmlgateway.xml configuration file.

Diary fields

<diary field="536870934" entries="all" expression="diary"
 options=”...”>
 <item expression="time" type="timestamp"
 dateFormat="hh:mm:dd/MM/yyyy zzz"
 timezone="America/Los_Angeles" />
 <item expression="user" type="user" />
 <item expression="text" type="text" />
</diary>

In AR System, diary fields contain a list of entries, each with a timestamp,
user and block of text. The diary directive allows the extraction of
individual components of a diary field. The diary directive accepts the
following attributes:

• field: Field to be retrieved from the current result.

• entries: Which entries to output - first, last or all.

• expression: XPath expression of the diary node, relative to the result
root. When multiple diary entries are output, this node will be cloned
for each result.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 39 of 77
• options: If 'reverse' is passed into the options attribute, the diary

entries will be evaluated in reverse. This is useful in conjunction with
'all' being passed to the entries attribute. You may also pass the
options available when specifying a result field (i.e. base64,
removeControlCodes, etc).

The diary directive can contain multiple item directives that map XPath
expressions to an individual diary component. The following attributes can
be set on an item:

• type: The diary item value type - timestamp, user or text.

• expression: XPath expression of value to set in response, relative to
the node identified by the expression attribute of the diary directive.

• dateFormat: This attribute can be used on timestamps in order to
convert an internal numeric date into a human readable date. The
attribute requires a valid Java date format.

• timezone: When using the dateFormat attribute, the timezone can
be used to force the date to be rendered in a particular timezone. If
not provided then the machine timezone is used. If provided but not
understood then GMT is used.

In the event of multiple diary entries, the root diary node is repeated for
each entry. An example diary output follows:

<diary>
 <time>23/6/2006 10:30<time>
 <user>Fred<user>
 <text>User has a new printer<text>
</diary><diary>
 <time>22/6/2006 9:42<time>
 <user>Bill<user>
 <text>Printer has been ordered<text>
</diary>

Retrieving field properties

<arsProperty field="109" property="AR_DPROP_ENUM_LABELS"
expression="/sample/properties/licenseTypeLabels" />

If you wish to retrieve field properties then this can be achieved using the
arsProperty directive. The field and property are provided as attributes,
and an absolute XPath expression that states where the value (or values)
will be output. The property value can either be a reference to a Java
variable name within the AR API, or a numeric value - a complete list of
properties can be found in the AR API guides.

If a field has multiple values for a property (for different views), then they
will all be output at the given XPath location through multiple property
elements. Each property element will have an attribute (view) containing

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 40 of 77
the view ID, and the values will be placed in value elements with the
enumerated field ID set as the arid attribute.

This example is taken from the complexQuery.xml query template
(detailed below) and was generated using the arsProperty directive listed
above.

<licenseTypeLabels>
 <property view="20002">
 <value arid="0">Read</value>
 <value arid="1">Fixed</value>
 <value arid="2">Floating</value>
 <value arid="3">Restricted Read</value>
 </property>
</licenseTypeLabels>

Mark fields on query

After a successful query, it is possible to mark entries that are queried for
purposes such as allowing workflow to query only entries that have not
been queried. The command syntax is as follows:

<markOnQuery field=”123” value=”x” />

Where the field is required and the value is optional. When the value is not
given, the following value is set:

• If the field is a date, time, or time of day, the current date is set.

• If the field is an integer, real, decimal or byte, the value 1 is set.

• If the field is a character, the XML query output is set.

• If the field is none of the above, no operation is performed.

XML fragments

It is possible to convert data returned from the query into XML before
inserting into the output document.

It is important to understand the difference between this and the normal
behaviour: normally, data is XML encoded (ie the <items> is converted
into <items> and placed at the specified location, and this feature
creates an XML fragment (ie <items>) and inserts it into the output.

To create an XML fragment, supply the fragment=”true” attribute to a
<result /> directive, ie.

<result field="12345" expression="data" fragment=”true” />

For example, consider a scenario where the field 123 holds the value:

<items><item>printer</item><item>display</item></items>

The <result /> directive above, without the fragment=”true” attribute,
would create a single text node under the <data> element, ie.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 41 of 77
<data>
 <items>
 <item>printer</item>
 <item>display</item>
 </items>
</data>

However, with the fragment attribute set to true, the data is converted to
a new XML structure and placed under the data element, ie.

<data>
 <items>
 <item>printer</item>
 <item>display</item>
 </items>
</data>

The <result /> directive can also operate with the replace,
removeControlCodes, decrypt and trim options, ie the following will
replace the data element in the query template with the XML fragment:

<result field="12345" expression="data" fragment=”true”
options=”replace” />

Complex query example

The complexQuery.xml template provides a range of advanced querying
functionality and can be found in the standard location for query
templates. We recommend this is reviewed as it runs against the User
form so forms a good basis for building your own advanced templates.

Sorting results

 <searches><search>
 <server>myarserver</server>
 <form>User</form>
 <maxResults>3</maxResults>
 <sorts>
 <sort>
 <field>Login Name</field>
 <order>desc</order>
 </sort><sort>
 <field>Create Date</field>
 <order>asc</order>
 </sort>
 </sorts>
</search></searches>

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 42 of 77
The results of a query can be queried using the AR System API
functionality through the structure demonstrated above. You can specify
as many columns as you wish and set the order to desc or asc.

Parameterised queries

To keep the query requests as simple as possible, parameters can be
passed through the request and placed into the query executed, allowing
the template author to hide the complete query from the process querying
the gateway. The parameters can also be placed into the output XML.

The following directive illustrates how to pass a value with a parameter
called author:

<query>
 <template>templateName</template>
 <configKey>userQuery</configKey>
 <searches><search><parameters>
 <parameter name="author" value="Dan B" />
 <parameter name="city" value="Texas" />
 </parameters><search><searches>
</query>

To use this parameter in the query (with a AR System data source) then
the author parameter is used as follows (note the syntax :author within
the query):

<configuration>
 <user key="userQuery"><searches><search>
 <server>myarserver</server>
 <form>User</form>
 <query>
 'Login Name' = ":author" and 'Description' = ":city"
 </query>
 <search><searches></user>
</configuration>

If you also wish to place the parameter in the output XML then use the
following syntax:

<searchParameter name="author" expression="/query/theAuthor" />

The complexQuery template demonstrates this functionality.

Chaining query templates

You may wish to query multiple forms in one transaction, for example,
when retrieving a list of incidents with associated tasks and worklogs
(both of which are stored in separate forms to incidents in BMC ITSM).
The following directive allows you to specify a call to another query
template while processing entries:

<callTemplate template="incidents-worklogs" key="search"

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 43 of 77
 expression="worklogs" fields="Incident Number" />

This means, for each result processed, execute the query template called
incidents-worklogs, use the configuration key search, pass the field
Incident Number (from the current entry) as a parameter to the template,
and place the results under the worklogs element.

In the incidents-worklogs template, a search is defined as follows:

<searches><search>
 <server>myarserver-appadmin</server>
 <form>HPD:WorkLog</form>
 <query>":Incident Number" = 'Incident Number'</query>
</search></searches>

You can see the Incident Number has been defined as a parameter to the
search (using the syntax :Incident Number), and hence the query will
return all worklog entries for the given incident.

An example of retrieving incidents with worklogs and tasks is provided
through the incidents.xml template (which calls the
incidents-worklogs.xml and incidents-tasks.xml templates). There is also
a video on the website that demonstrates the functionality.

Encouraging portable templates

To avoid having to define the server in the template being called, the
server used for the original query will be passed into the query. However,
you can override this by defining the server in the child template.

XSL Transformations

XSL transformations allow you to build complex XML documents that are
beyond the scope of the gateway, which is designed to simply extract
data in a logical fashion.

If you wish to perform an XSL transformation on the XML output through
the query, you can do this by using the xslt directive. Your xslt files
should be stored in a directory called xslt in the classpath – i.e.
WEB-INF/classes/xslt.

For example, if you had an xslt file called convertRSS.xslt, you'd use the
directive as follows:

<xslt>convertRSS.xslt</xslt>

We provide an example RSS feed of ITSM incidents that's built up from a
query template using an XSL transformation. The template is called
incidentsRSS.xml.

There's many good XSLT tutorials on the web and one can be found here:

http://www.w3schools.com/xsl

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://www.w3schools.com/xsl/

JSS XML Gateway Installation and usage - Page 44 of 77
Filters

This feature enables one of the inbuilt filters that are used to translate the
query output from an XML document into another form - hence, allowing
data to be transformed from XML into another format. Filters are applied
on a per configuration key basis. This is the inverse of the filter
configuration defined in the create/modify documentation so please refer
to it if considering using filters.

The following standard filters exist within the gateway:

CSV

The CSV filter will translate a pre-defined XML format into CSV. The format
required is as follows:

<root> <row index="0">
 <col index="0">Data</col>
 <col index="1">Item</col>
</row><row index="1">
 <col index="0">Data</col>
 <col index="1">Item</col>
</row></root>

Each row and/or column can be uniquely identified by the index attribute.

Please see the sampleQueryCSV template for a working example.

JSON

The JSON filter will translate an XML document into a JSON string. An
example can be found in the sampleQueryJSON.xml template. Running
this through a browser will cause a file download prompt because the filter
element is set with a filename (query.json).

Swift

The Swift filter uses the Open Source WIFE project to generate XML
output. Please refer to the WIFE XML documentation for details of the
output format.

Setting file download headers

When defining a filter in a query template, the filename attribute can be
used to set a filename that will be set in the HTTP headers. This causes a
browser to open a 'save as' dialog, which is a useful addition to those
building web interfaces around the gateway.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://wife.sourceforge.net/index.php?page=xml
http://wife.sourceforge.net/
http://en.wikipedia.org/wiki/JSON

JSS XML Gateway Installation and usage - Page 45 of 77
filter-class

Bespoke filters can be written by implementing the filters interface. To use
your own filter, simply provide the classname in this directive and ensure
the class is present on the Java classpath.

Template based filters

Query templates can be configured to run with a filter through a
configuration or globally.

Globally

<query type="ars">
 <filter>csv</filter>

Configurations

<configuration>
 <user key="userQuery"><searches><search>
 <filter>csv</filter>
 <server>myarserver</server>

Setting filter on query request

If a template has not got a filter defined on a configuration or globally, the
query request can contain a filter element to tell the XML Gateway that
the data should be converted into a different output format, ie.

<query>
 <template>templateName</template>
 <configKey>configurationKey</configKey>
 <filter>csv</filter>
 …
</query>

JSON based queries

Whilst the XML Gateway is primarily an XML based platform, some third
party applications would like to communicate using JSON. The most
common request is to perform a query, through a JSON based request,
and receive results in XML or JSON.

There is no exact science in converting an XML structure to JSON so the
filters page within the web interface provides functionality to convert XML
into JSON. This can forward the browser to the query form so it can be
executed against the appropriate template.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 46 of 77
If a third party application wishes to use JSON, the test query page can be
used to determine how the HTTP call should be made.

The AR System impersonate feature

It is possible to use this feature via a query request, assuming the
template has been configured to run with an AR System administrator
user. To do so, use the following syntax in bold:

<query>
 <template>templateName</template>
 <configKey>configurationKey</configKey>
 <impersonate>user</impersonate>
 …
</query>

Throttling

As described for create/modify templates.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 47 of 77

Securing templates through client authentication

The Gateway Authentication supports AR System servers and Directory
Services..

The system allows templates to be restricted to AR System or Directory
Service users, and ensures that operations are run as the authenticated
user, and not the user defined in the XML Gateway configuration file. On
the test page, you can see an example form that makes use of the
/authentication/authenticate.do servlet. Templates are restricted by using
the secure directive (detailed in the manual pages).

The sessions are maintained by the standard Java Servlet engine cookie,
commonly called JSessionID. After authenticating with the servlet (or via
webservice call to the authenticate function), the client must present this
cookie on all subsequent requests to the gateway. Failure to do so will
mean the gateway is unable to look up the session, and hence, the
request will be denied because the template has been marked as secure.

When you access the servlet from outside of the XML Gateway test page,
you will get an XML response providing the results of the authentication
challenge. The response will either be:

<success sessionID="12345" />

for a successful authentication, or:

<exception>Message</exception>

If the username and/or password was invalid for the authentication
source.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 48 of 77

HTTP URLs exposed by the gateway

The gateway web interface demonstrates all the HTTP URLs exposed by
the gateway. Whilst the web interface can be used to look at how the
operations work, the majority are summarised below.

Performing create/modify operations

/pushxml/createmodify.do:

• template: Name of create/modify gateway template. If not passed
then the HTTP bindings will be consulted for a template based on
source IP address.

• server: The server in which operations will be performed. If not
passed then the HTTP bindings will be consulted for a server based
on source IP address.

• xml: The XML to process. If not passed then the XML will be read
from the raw input stream, ie allowing a third party to post raw XML
into the servlet.

• view: Optional Spring view to which the servlet will forward. The
views should be a reference to a JSP files without the .jsp extension.

/pushxml/createmodifyupload.do:

• template: As above.

• server: As above.

• file: Multipart file containing the xml to process.

• view: Optional Spring view to which the servlet will forward. The
views should be a reference to a JSP files without the .jsp extension.

Performing query operations

/pushxml/query.do:

• xml: The XML to process. If not passed then the XML will be read
from the raw input stream, ie allowing a third party to post raw XML
into the servlet.

• json: If provided, the JSON text will be converted to XML using the
reverse of the process used by the form on the filters page to
generate JSON from XML. This parameter allows third party clients
to send JSON requests, perhaps when they are not capable of
sending an XML request.

• fiilename: If supplied, the HTTP download headers will be set
causing the browser to open a 'save as' dialog. This is useful for
building web interfaces around the gateway.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 49 of 77
/querybyparameter/arsystem.do:

• template: Name of query gateway template. If not passed then the
HTTP bindings will be consulted for a template based on source IP
address.

• configkey: Optional template configuration key.

• server (optional): The server to query.

• form (optional): The form to query.

• p-x: One or more parameters can be set on the query request by
passing them as HTTP parameters with the key set to p-. ie if you
wish to set the query search parameter loginname to dkellett, you
would pass p-loginname=dkellett.

• fiilename: If supplied, the HTTP download headers will be set
causing the browser to open a 'save as' dialog. This is useful for
building web interfaces around the gateway.

Authentication

/authentication/authenticate.do:

• server: The server on which you wish to authenticate.

• user: The username.

• password: The password.

• auth: AR System authentication string.

• view: Optional Spring view to which the servlet will forward.

/authentication/unauthenticate.do:

• view: Optional Spring view to which the servlet will forward.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 50 of 77

Integrating with the gateway with other systems

The gateway's template and XML management is separated from the
connectors, and a number of connectors are supported out of the box.
The gateway is also heavily dependent on the open source Spring
Framework (http://www.springframework.org) and hence developers can
re-use existing components to build integrations – the JMS connectivity is
almost entirely based on Spring.

The connectors are listed below:

1. HTTP: Servlets and webservices are exposed. The servlets are used
by the web test harness and hence it's easy for developers to
undestand how they function. The webservices are described below
and URLs to the WSDLs are provided in the web interface.

2. Java Messaging Services: The gateway provides a number of JMS
tasks to perform operations.

3. File fetchers: Defined in the xmlgateway.xml file, these are tasks
that run every X minutes, pulling xml/csv files from a directory and
processing the data.

Java Messaging Services

JMS form the core messaging infrastructure in many large organisations,
and essentially enable an enterprise to build fault tolerant messaging
system allowing different systems to exchange information. More
information on JMS can be found at the Sun JMS homepage. The XML
Gateway can integrate with various JEE servers providing JMS (version 1.1)
functionality as well as standalone JMS providers such as TibcoESB and
ActiveMQ.

Before you can connect to a JMS, you must setup the Java Web Server
running the gateway to communicate with the JMS (instructions to cover
common cases are provided in the XML Gateway configuration files). This
usually involves copying some vendor specific JMS jar files from the JMS
server product into the Java Web Server running the XML Gateway.

Integration technique for create/modify/delete

The gateway binds to an inbound JMS queue (or topic, but does not
remove messages!) and is configured to use a specific template and
server. It may also bind to an outbound JMS queue (or topic) to which the
XML Gateway response will be sent. When a message arrives, it is
processed with the template and server configured, and if an outbound
queue has been configured then the XML response will be published.

Given JMS is an asynchronous messaging system, an external 'transaction
ID' is supported to allow an ID (of some kind) to be taken from the inbound
XML response and set on the XML response. This allows third party

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://java.sun.com/products/jms/
http://www.springframework.org/

JSS XML Gateway Installation and usage - Page 51 of 77
systems to reconcile a source message and a response that will arrive at
some point in the future.

Integration technique for queries

The process for integrating a JMS for querying functions is almost exactly
the same as it is for create/modify/delete. The only difference is the
number of configuration items set up in the XML Gateway configuration
file.

Configuration files

JMS configuration is not an easy procedure and we suggest that you talk
to Java System Solutions support if the following information requires
further clarification.

There are two Spring configuration files shipped with the gateway:
jms-core-context.xml and jms-jobs-context.xml. They are not loaded by
default so the first task is to enable them – we recommend you start with
just the jms-core-context.xml as if the Spring file is not configured
correctly, the gateway may not start when Tomcat is restarted and hence
configuring one file at a time reduces the amount of potential debugging.

To load the JMS configuration, locate the file web-application-context.xml
(in WEB-INF/classes) and uncomment the first resource so it looks like this:

 <import resource="jms-core-context.xml" />
 <!-- import resource="jms-jobs-context.xml" /-->

The jms-core-context.xml now needs configuring.

Core configuration

The Spring configuration file jms-core-context.xml defines the core JMS modules
required for interaction with a messaging server.

Datasources

If you're running the gateway outside of an application server, you will need to
configure the following bean:

 <bean id="jms.core.JNDITemplate"
class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <props>
 <!-- Tibco configuration -->
 <prop key="java.naming.factory.initial">
 com.tibco.tibjms.naming.TibjmsInitialContextFactory
 </prop>
 <prop key="java.naming.provider.url">
 tibjmsnaming://localhost:7222
 </prop>
 </props>

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 52 of 77
 </property>
 </bean>

This configures the Java Naming Directory Interface (JNDI), which tells it
how to connect to the messaging server. You will almost certainly need to
deploy a vendor driver jar file to the gateway WEB-INF/lib directory. The
properties are also vendor specific, so please consult the vendor's
documentation.

If you are running the gateway within an application server, such as
Weblogic, Websphere, JBoss, etc., then you may wish to not configure this
bean and look up the JMS datasource directly from the JNDI (if you
configured it through the application server).

Connection factories

A connection factory is required for each messaging server to which you
want to connect. The following defines a connection factory:

 <bean id="jms.core.connectionFactory"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiTemplate" ref="jms.core.JNDITemplate" />
 <property name="jndiName"
value="com.javasystemsolutions.connectionFactory" />
 </bean>

Please note, if you have not defined a datasource (because the application
server provided one) then you do not need to specify the jndiTemplate
property in bold.

Defining a queue

To define a queue, we define two beans – one which is merely a pointer to
the queue, and another which provides management facilities on the
queue (a Spring JmsTemplate) and is used heavily by the gateway. The
name of the queue is highlighted in bold:

 <bean id="jms.core.destination.createModifyIn"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiTemplate" ref="jms.core.JNDITemplate" />
 <property name="jndiName"
value="com.javasystemsolutions.createModify.InQueue" />
 </bean>
 <bean id="jms.core.template.createModifyIn"
class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory"
ref="jms.core.connectionFactory" />
 <property name="defaultDestination"
ref="jms.core.destination.createModifyIn" />
 </bean>

Please note, if you have not defined a datasource (because the application
server provided one) then you do not need to specify the jndiTemplate
property defined in the JndiObjectFactoryBean.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 53 of 77
Defining templates

The JmsTemplates are referred to by various integration points, such as
the 'query and forward to a Java Messaging Service' webservice or the
'query and send to JMS' scheduled job. They provide a functional unit that
can be used by XML Gateway components to, among other things, send
messages to a destination.

They are defined as follows:

<bean id="jms.core.template.createModifyIn"
class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory"
ref="jms.core.connectionFactory" />
 <property name="defaultDestination"
ref="jms.core.destination.createModifyIn" />
</bean>

The string highlighted in bold (jms.core.template.createModifyIn) is the
bean name referred to by XML Gateway components (detailed below).

XML Gateway JMS components
A set of example configuration can be found in the jms-jobs-context.xml
file. To enable, locate the file web-application-context.xml (in
WEB-INF/classes) and uncomment the following resource:

 <import resource="jms-jobs-context.xml" />

The XML Gateway components run within a Spring
DefaultMessageListener; a component that attaches to a destination,
picks up messages and delivers to an XML Gateway task that does
something with them.

Create/modify message listener

This message listener reads XML messages and processes them using a
create/modify template, ie performs creates/updates/deletes to AR System
forms.

A Spring JMS message listener is defined as follows (some configuration
has been removed to simplify the example):

<bean id="jms.jobs.messageListenerContainer.createModify"

class="org.springframework.jms.listener.DefaultMessageListenerContai
ner">
 ..
 <property name="connectionFactory"
ref="jms.core.connectionFactory" />
 <property name="destination"
ref="jms.core.destination.createModifyIn" />
 <property name="messageListener"
ref="jms.jobs.messageListener.createModify" />
 ...

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 54 of 77
</bean>

The three properties refer to the connection factory and destination
(queue or topic) defined in the jms-core-context.xml configuration, and
the create/modify message listener that is defined as follows:

<bean id="jms.jobs.messageListener.createModify"

class="com.javasystemsolutions.xml.gateway.jms.CreateModifyEventMess
ageListener">
 <property name="template" value="newUsersSchema" />
 <property name="server" value="myarserver" />
 <property name="outTemplate"
ref="jms.core.template.createModifyOut" />
 <property name="hospitalTemplate"
ref="jms.core.template.createModifyHospital" />
 ..
 <property name="inJmsTemplates"><list>
 <ref bean="jms.core.template.createModifyIn" />
 </list></property>
 <property name="transactionManager"
ref="jms.core.transactionManager" />
</bean>

The properties are defined as follows:

1. The XML Gateway template that is used to process the incoming
XML.

2. The AR System server alias.

3. The JMS template (not destination) used to send the create/modify
responses. This is optional.

4. The JMS template (not destination) 'hospital' used to send messages
that could not be processed. This is optional.

5. The list of JMS templates to which the message listener is processing
messages. The CreateModifyEventMessageListener can be
connected to many DefaultMessageListener and hence it can listen
to multiple inbound destinations.

6. The transaction manager, which is always set as above.

There is one further property that can be set: validityCheck. This should
be an XPath expression that returns a boolean value, and if set, the
message will only be processed when the XPath expression returns true.

Query event message listener

This message listener reads XML query requests and executes them
against the given server, ie queries AR System and produces an XML
response.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 55 of 77
The Spring JMS message listener and query message listener are defined
as follows:

<bean id="jms.jobs.messageListenerContainer.query"

class="org.springframework.jms.listener.DefaultMessageListenerContai
ner">
 ..
 <property name="connectionFactory"
ref="jms.core.connectionFactory" />
 <property name="destination" ref="jms.core.destination.queryIn" />
 <property name="messageListener"
ref="jms.jobs.messageListener.query" />
 ..
</bean>
<bean id="jms.jobs.messageListener.query"
class="com.javasystemsolutions.xml.gateway.jms.QueryEventMessageList
ener">
 <property name="target" ref="jms.core.template.queryOut" />
 <!-- Listener needs direct access to the queues so it can empty
them when it starts -->
 <property name="inJmsTemplates"><list>
 <ref bean="jms.core.template.queryIn" />
 </list></property>
 <property name="transactionManager"
ref="jms.core.transactionManager" />
</bean>

It is very similar to the create/modify example above however it reads
from one or more in queues, and sends the output to an out queue via a
template (jms.core.template.queryOut).

Please note, Spring JMS configuration is not easy so if in doubt, contact JSS
with a list of requirements, ie.

1. The type of JMS provider you are using.

2. The processes you want to perform, ie create/modify or query.

3. The in and out queue names.

And JSS can assist in creating the Spring configuration.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 56 of 77

Webservices exposed by the gateway

The gateway now also incorporates Apache CXF, an actively maintained
project that provides a SOAP stack and a range of other features (such as
REST based services). While the gateway primarily makes use of the SOAP
stack, other CXF functionality will be made available in a later release.

In a previous version of the gateway, AR System integration had to be
performed with the Axis SOAP stack built into the gateway. This is being
removed in favour of CXF. Please report any issues with being unable to
migrate to CXF, which should simply involve re-creating the filter set fields
with the CXF WSDL.

Locating the WSDLs

There are a number of WSDLs and they are exposed through both SOAP
stacks. These are all linked through the portal page (under
documentation).

• xmlgateway.wsdl: Provides a range of XML Gateway functionality
such as querying for XML, posting XML and authenticating with the
gateway. This is the only WSDL you'll likely to require when
integrating with AR System.

• forwards.wsdl: Provides a range of data forwarding functionality
(send a String to a JMS destination, URL, another gateway, file, etc.).
This functionality is largely wrapped by the XMLGateway webservice
but is useful standalone and hence exposed to the user.

Important note

WSDLs contain the location of the SOAP server and the WSDLs are usually
produced with the hostname set to localhost. Therefore, your client code
will have to change the location unless it's running on the local machine
(which is very unlikely). If you are integrating with AR System then you
will definitely have to obtain a WSDL with a modified wsdl:location, so AR
System knows where to find the SOAP server.

To obtain a WSDL and modify the location, follow these steps:

• Go to the WSDL (using a link above).
• Save it to a local file.
• Open the WSDL in a text editor.
• Search for wsdl:location and change the hostname.

However, the location can be configured to your environment for CXF. The
file xmlgateway/WEB-INF/classes/cxf-server-context.xml contains
instructions on how to configure the location (search for 'address').

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://cxf.apache.org/

JSS XML Gateway Installation and usage - Page 57 of 77
Services provided by the XML Gateway WSDL

To obtain the XML Gateway WSDL, use one of the links above.

Create and modify

The function returns the standard XML response string.

The post function allows you to post XML into the gateway and takes the
following three parameters:

1. template: The name of the template to use.

2. server: The name of the AR System server to use.

3. xml: The XML document to process.

The postThroughBindings method also allows you to post XML into the
gateway using the HTTP create/modify bindings to specify a template and
server mapped to the source IP address. This works in the same way as
the /pushxml/createmodify.do servlet. The method only takes one
parameter:

1. xml: The XML document to process.

Both the postThroughBindings and post methods can read attachments
from the SOAP headers, which can then be matched to the XML via the
MIME content ID. To make use of this feature, see the attachment tag in
the create/modify manual for more details.

The method returns the standard XML response string.

Querying

The query method will perform a query and return the XML query
response. The method takes one parameters:

1. xml: XML based query.

Querying through HTTP Query bindings

The queryThroughBindings method allow a client to query the gateway
using the HTTP Query bindings to specify a template and authorisation key
mapped to the source IP address. This works in the same way as the
/pushxml/query.do servlet and takes just one parameter:

1. xml: The XML query document.

Query and forward to URL

If you wish to perform a query and send the results directly to a listening
service, you should use the queryAndForwardToURL method. The following
two parameters are required:

1. xml: XML based query.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 58 of 77
2. targetURL: The URL target to which results will be sent.

At present, HTTP and file URL targets are supported, and the method will
write the results directly to the third party using an HTTP post, or directly
to a file.

The function will return true or false indicating the success of the
transaction.

Query and forward to SOAP endpoint

If you wish to perform a query and send the results directly to a SOAP
endpoint, you should use the queryAndForwardToSOAPTarget method. The
following parameters are required:

1. xml: XML based query.
2. targetURL: The URL target to which results will be sent.
3. username: Optional username for HTTP basic authentication.
4. password: Optional password for HTTP basic authentication.
5. soapAction: Optional value for the SOAPAction HTTP header.

This method only differs from the queryAndForwardToURL method in
respect to the fine tuning for making a SOAP call. It is a one way method,
so a response is not processed. The query template used to generate the
message would take the form of a SOAP request.

The function will return true or false indicating the success of the
transaction.

Query and forward to another XML Gateway

XML Gateway instances can be used in clusters to replace AR System
functionality such as DSO. You may perform a query and have the results
posted directly to another XML Gateway server through the normal
create/modify mechanism, and the method will return true if the
transmission was successful.

The function to support this functionality is called
queryAndForwardToXMLGateway and takes the following four parameters:

1. xml: XML based query.
2. targetURL: The target URL of the remote XML Gateway (such as:

http://anotherserver:8080/xmlgateway/pushxml/createmodify.do).
3. targetTemplate: The create/modify template to be used on the

remote XML Gateway.
4. targetServer: The target AR System server to be used on the remote

XML Gateway.

While we appreciate it is a little long winded to put in such a long target
URL, we feel this is the most generic way of providing this functionality.
After all, you may have changed the application context path or servlet
location! But in practice, we expect the URL example we have provided
will be sufficient.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 59 of 77
The function will return true or false indicating the success of the
transaction.

Query and forward to a Java Messaging Service

If you wish to perform a query and send the results directly to a JMS, you
should use the queryAndForwardToJMS method.

The first step is to configure JMS, which is covered in a separate section of
this documentation.

While setting up JMS, you will define one or more destinations (queues or
topics) and a Spring JmsTemplate for each destination. Each JmsTemplate
is given an ID – i.e., from the example jms-core-context.xml file, the ID is
in bold:

<bean id="jms.core.template.createModifyOut"
class="org.springframework.jms.core.JmsTemplate">

Typically, you will define a destination with a meaningful name and
another third party process will subscribe and process the XML messages
as they are published.

The webservice method is very easy to use and takes two parameters:

1. xml: XML based query.
2. The ID of a Spring JmsTemplate.

The function will return the JMSMessageID if the transaction was
successful.

Query and forward to a message sending destination

The message sending framework contains Destinations that can be
invoked with this webservice. The Destination must be declared in the
Spring context and the bean ID passed into the webservice.

This is beneficial because you can easily define bespoke Destination
objects within the Spring configuration and reference through workflow.
Here is an example of the HTTPDestination being configured in Spring, the
ID is in bold and it defines a custom connect/read timeout of 30s (which is
a very high figure and used for illustrative purposes):

<bean id="webservice.http.mydestination"

class="com.javasystemsolutions.xml.gateway.messagesending.HTTPDestin
ation">
 <property name="url" value="http://localhost:8181/target" />
 <property name="timeout" value="30000" />
</bean>

The function to support this functionality is called
queryAndForwardToDestination and takes the following four parameters:

1. xml: XML based query.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html#getJMSMessageID()

JSS XML Gateway Installation and usage - Page 60 of 77
2. destinationSpringID: The ID of the Spring bean that defines a

Destination.
The function will return true or false indicating the success of the
transaction.

Query ARS and forward to message sending framework

The queryARSAndSend method runs an AR System query and sends the
results to the message sending framework. The following six parameters
are required:

1. template: The name of the template to use.
2. authKey: The authorisation key to use.
3. server: The name of the AR System server to use.
4. form: The AR System form to query.
5. query: The AR Syste, QBE query to executed.
6. target: Name of message sending target.
7. handler: Name of message sending handler.
8. schedule: Name of message sender scheduler.
9. attemptSyncSendFirst: Whether a synchronised send should be

attempted. If set to false then a schedule should be provided. If true
then an attempt will be made to send the message (and decode the
response) synchronously, before attempting asynchronously if a
schedule has been provided.

The function will return a value from the message sending framework.

Query ARS and invoke a Plugin

This functionality should no longer be used. The message sending
framework, scheduler and queryAndForwardToDestination
webservice provide a much better solution.

The queryARSAndInvokePlugin method will perform a query against the
gateway and pass the results into a webservice plugin. A webservice
plugin can be written by anyone with Java skills using an interface
provided with the gateway, and allows higly bespoke functionality to be
bolted onto the gateway with ease. The following seven parameters are
required:

1. template: The name of the template to use.
2. authKey: The authorisation key to use.
3. server: The name of the AR System server to use.
4. form: The AR System form to query.
5. query: The AR Syste, QBE query to executed.
6. plugin: The fully qualified class name of the Plugin implementation.
7. param1-param10: A set of parameters that will be passed to the

Plugin. An array would have been used however it appears the AR
System can not consume a WS and pass attributes to an array!

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 61 of 77
Refer to the Developing plugins documentation for more information on
using this powerful functionality.

Combined post and query

The postAndQuery function combines the post and query webservice
functions into one function. It will process the input XML and then query
the gateway, returning the XML response.

1. template: The name of the template to use.
2. server: The name of the AR System server to use.
3. postXML: The input XML document to process.
4. queryXML: The XML query based request.

Combined query and post

The queryAndPost function combines the query and post webservice
functions into one function. It will perform the query and then post the
response using the template and server provided.

1. queryXML: The XML query based request.
2. template: The name of the template to use.
3. server: The name of the AR System server to use.

Authenticate

The authenticate method allows a client to authenticate with the gateway
so it may access secured templates.

1. serverAlias: XML Gateway server alias.
2. username: AR System user or Directory Service principal.
3. password: AR System password or Directory Service credentials.
4. authentication: AR System or Directory Service authentication.

The method returns a session ID if successful. The client must also retain
the JSESSIONID cookie to maintain the session through subsequent
operations.

Unauthenticate

The unauthenticate method clears a client's authentication. It takes no
parameters.

Perform an XPath select

The performXPath method allows a client to perform an XPath select on a
given XML string. The method was added for the benefit of the AR System
that has no XML parsing abilities.

1. xml: XML string.
2. expression: XPath expression that should return one value.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 62 of 77
The method returns the value returned by the expression.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 63 of 77

Message sending framework

Overview

When passing data between two services, an element of ‘store and
forward’ must exist in each direction. The primary reason for this
functionality is to allow a message to be stored in the event of the remote
service being unavailable. Given both sides of the integration have to
implement this functionality, it is best practice for each party to handle
the store and forward requirement as part of the message sending
functionality.

The XML responses from the third party also need to be decoded by the
gateway, and given every third party response will be different, a
configurable system is required.

These two problems – store & forward, and third party message handling –
are addressed using the XML Gateway message sending framework.

The framework is written using Spring configuration files, and includes a
variety of interfaces, allowing developers to build integrations around the
framework.

Third party to AR System

The XML Gateway will provide an XML response when processing a
message passed to it by the third party, and this response can be used to
determine whether the remote data source (such as AR System or a
database) is currently unavailable. By using this information, the third
party can make a decision to whether it wishes to store the message and
resend it at a later date. It is up to the third party to decide a resend
policy.

AR System to third party

The XML Gateway provides store and forward functionality to workflow
through a number of simple webservice calls to the gateway. While there
are a number of webservice calls that allow messages to be sent, many
send XML and return the third party response to the client. AR System has
no XML parsing capabilities, and hence an XML response is of no use to AR
System workflow. Therefore, a system is provided that examines
responses, provides store and forward functionality and can update the AR
System once the transfer of a message has been completed.

Typically, the framework would be invoked through the XMLGateway
sendMessage webservice method (described below).

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 64 of 77
Key components of the message sending functionality

There are four key components of the message sending architecture, all of
which are defined in the Spring message-sending.xml configuration file:
destinations, message handlers, error handlers and triggers.

Destinations

A destination defines a way in which a message will be sent. There are a
number of destinations provided with the gateway and more can easily be
provided by JSS or through implementing the Destination interface – api
documentation is linked from the XML Gateway web interface.

The following is a list of destinations provided with the gateway.

HTTPDestination

This destination will perform an HTTP post to a given URL passing the XML
with a parameter or as a raw post. The raw post facility allows you to
create raw SOAP messages and post to a third party.

Example Spring configuration:

<bean id="ms.http.destination.example"

class="com.javasystemsolutions.xml.gateway.messagesending.HTTPDestin
ation">
 <property name="url" value="http://localhost:8181" />
 <!-- If not provided then the XML is posted directly to the
destination without an HTTP parameter -->
 <!--property name="parameter" value="xml" /-->
</bean>

You can also set the connection timeout using the timeout property and
passing a value in milliseconds. The default is 60s.

SampleDestination

This destination can be used as a part of a test rig. It takes one
parameter, success, and this may be true or false, and the destination will
either succeed or fail given the value of success.

Example Spring configuration:

<bean id="ms.test.destination.sample.success"

class="com.javasystemsolutions.xml.gateway.messagesending.SampleDest
ination">
 <property name="success" value="true" />
</bean>

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 65 of 77
WebserviceDestination

This destination calls a method (by loading a WSDL) that is assumed to
take a single string parameter and passes the XML to it. This is a simple
destination in the event you want to deliver XML to a third party. You could
build a similar destination to perform a more complex integration (we are
happy to provide source code).

<bean id="ms.test.destination.sample.success"

class="com.javasystemsolutions.xml.gateway.messagesending.Webservice
Destination">
 <property name="wsdl" value="http://remote/service?wsdl" />
 <property name=”method" value="postxml" />
 <!-- These are optional -->
 <property name="username" value="myuser" />
 <property name="password" value="mypassword" />
</bean>

Message handlers

A response handler sends a message to a destination and deals with the
response. While sending a message is the only method on the
MessageHandler interface, the implementation would typically do
something with the response. You can write your own implementations of
a MessageHandler if you wish to customise the behaviour.

The following handlers are provided with the gateway:

DefaultMessageHandler

The DefaultMessageHandler sends a message and pushes the response
through the gateway if a create/modify template has been defined. A
sample syntax is defined as follows:

<bean id="ms.test.messageHandler.sample.success"

class="com.javasystemsolutions.xml.gateway.messagesending.DefaultMes
sageHandler">
 <property name="destination"
 ref="ms.test.destination.sample.success" />
 <!-- Optionally send XML response to create/modify -->
 <property name="createModifyTemplate"
 value="messagesending-update-from-test" />
 <property name="createModifyServer" value="myarserver" />
</bean>

ARSMessageHandler

This handler extends the DefaultMessageHandler to provide the following
extra properties:

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 66 of 77
• xmlWriteBackField: The ID of a field that exists on the form used to

generate the XML that is passing through the handler. Before the
XML is sent to the destination, the XML is written to the entries used
to generate the XML by updating this field.

Error handlers

The error handler provides a mechanism to invoke functionality on the
entries returned from the original query should the message sending fail.
Typically, this would be used to mark an entry as 'unsent', by setting a
field (such as status) to a particular value.

An example error handler is defined as follows:

<bean id="ms.test.errorhandler"
class="com.javasystemsolutions.xml.gateway.messagesending.ARSErrorHa
ndler">
 <property name="server" value="myarserver" />
 <property name="form" value="User" />
 <property name="field" value="536780912" />
 <property name="value" value="SEND_FAILED" />
</bean>

The ErrorHandler interface allows you to build your own implementations
if the default functionality does not surfice. The interface is defined in the
api documentation linked from the XML Gateway web interface.

Triggers

Triggers are defined exactly the same way as they are when using the
scheduler, so please refer to that part of the manual.

Methods of operation

The message sending framework operates synchronously and
asynchronously to the gateway call. There are a number reasons for
providing asynchronous functionality:

• Running synchronously means the webservice call could take a long
time to complete if the third party is running slowly.

• If the third party is unavailable, a system of 'store and forward' is
required to send a message at a later time. This can only practically
happen in an asynchronous fashion.

These two methods of operation allows store and forward functionality to
be implemented in and out of an AR System server thread. In, by
attempting to send a message synchronously using the sendMessage
webservice function (which returns true on success), or out, by not setting
the synchronous flag and letting the gateway run the functionality within
its own thread.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 67 of 77
1. Query request, used to generate an XML message.

Invoking through a webservice

The sendMessage webservice provides a facility to send an XML message
to a third party and decode an XML response. The workflow call takes a
number of well documented parameters, plus additional parameters that
are specific to message sending:

The method requires the following parameters:

1. Message hander, used to transport the message to a destination
and deal with the XML response.

2. Error handler, used to deal with an error if one should occur.

3. Trigger, used when a message is sent asynchronously and added to
the Quartz scheduler. By not passing the name of a schedule to the
webservice call, no store and forward will be attempted.

4. A boolean flag (attemptSyncSendFirst) stating whether a
synchronous send should be attempted first. This would take place
within the AR System server thread.

There are three possible outcomes from the sendMessage method:

1. If attemptSyncSendFirst was set to true and the message was
delivered, return true.

2. If attemptSyncSendFirst was set to true, the message was not
delivered and a trigger was not provided, the gateway will return
false and invoke the error handler (if provided).

3. If a trigger was provided and either attemptSyncSendFirst is false, or
it is true and the message was not delivered, and a trigger was
defined, the gateway will schedule the message and attempt to
deliver it at a later time. In this case, the webservice call will return
true.

If the scheduler is invoked as per (3) and the message is never delivered,
the error handler will be invoked if provided to the sendMessage method.
Typically, the error handler would be used to set a field on the entries
returned from the original query in order to indicate that they were not
sent.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 68 of 77

Using the scheduler

The gateway makes use of a scheduler called Quartz. This is configured
through the Spring framework in the file scheduler-context.xml. The
gateway comes with jobs that can run through the scheduler in order to
assist with integrating with a third party system. An approach where by
the gateway queries AR System records and then pushes them out to a
third party is a good way of reducing the load on AR System and not
interrupting the workflow to perform the tasks of querying data and
pushing it to a third party system.

Spring configuration file

The scheduler context file is broken down into the following components.

Core scheduler

The scheduler configuration starts with defining the scheduler itself and a
set of jobs to run. The jobs are linked via triggers, and each job requires
one trigger. Each trigger is referred to through the <ref bean=”..” />
element.

<!-- Create scheduler -->
<bean id="global.schedulerFactoryBean"

class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
 <property name="quartzProperties">
 <map>
 <entry key="org.quartz.threadPool.threadCount" value="10" />
 </map>
 </property>

 <!-- Tasks to kick off -->
 <property name="triggers">
 <list>
 <ref bean="scheduler.triggers.queryAndPost.example" />
 </list>
 </property>
</bean>

Triggers

The trigger defines when the job will be executed – note that the bean id
(scheduler.triggers.queryAndPost.example) is referred to in the list of
triggers above.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 69 of 77
The example below uses a trigger based on the Unix cron system – it is
documented here:

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springfram
ework/scheduling/support/CronSequenceGenerator.html

The jobDetail property references the job.

<bean id="scheduler.triggers.queryAndPost.example"
class="org.springframework.scheduling.quartz.CronTriggerBean">
 <property name="jobDetail"
ref="scheduler.jobs.queryAndPost.example" />
 <property name="cronExpression" value="0 20 1 * * ?" />
 </bean>

Jobs

The job defines the activity of work that will be performed by the trigger –
note that the bean id (scheduler.jobs.queryAndPost.example) is referenced
in the trigger above.

The following example job performs a query and post, which queries the
AR System and pushes the results back through the gateway into the
same (or another) AR System server. This is a great way to easily transfer
data from one AR System server to another, by defining a query template
that produces output that can be processed by a create/modify template.

The query request and post template/server are clearly identifiable, and
the process also sets the status of all entries queried to 1 if the post is
successful.

<bean id="scheduler.jobs.queryAndPost.example"
class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="applicationContextJobDataKey"
value="applicationContext" />
 <property name="jobClass"
value="com.javasystemsolutions.xml.gateway.jobs.QueryAndPost" />
 <property name="jobDataAsMap">
 <map>
 <entry>
 <key><value>query</value></key>
 <value><![CDATA[

 <query>
 <template>sampleQuery</template>
 <configKey>userFormSearch</configKey>
 <searches><search>
 <server>myarserver</server>
 <form>User</form>
 <query></query>
 </search></searches>
 </query>

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/scheduling/support/CronSequenceGenerator.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/scheduling/support/CronSequenceGenerator.html

JSS XML Gateway Installation and usage - Page 70 of 77
]]></value>
 </entry>
 <entry key="postTemplate" value="newUser" />
 <entry key="postServer" value="myarserver" />
 <entry key="statusAfterQuery" value="1" />
 </map>
 </property>
</bean>

Instead of changing the entry status after successfully querying and
actioning the results, a job can be configured to delete the entries queried
by setting:

<entry key=”deleteAfterQuery” value=”true” />

The jobs ships with a number of jobs and if you require something
different then we can build them for you (please contact JSS for more
information).

Query and post to gateway

This job runs a query and pushes the results through a create/modify
template. This is documented above and is a great way to transfer data
between AR System servers.

Query and post to a Java Messaging Service

This job runs a query and pushes the results into a Java Messaging Service
destination (i.e. a queue or topic). A (reduced for clarity) example follows:

<bean id="scheduler.jobs.queryAndSendToJMS.example"
class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="applicationContextJobDataKey"
value="applicationContext" />
 <property name="jobClass"
value="com.javasystemsolutions.xml.gateway.jobs.QueryAndSendToJMS" /
>
 <property name="jobDataAsMap">
 <map>
 <entry>
 <key><value>query</value></key>
 <value><![CDATA[

 <query>
 ...
 </query>

]]></value>
 </entry>
 <entry key="target" valueref="jms.core.template.target" />
 <entry key="statusAfterQuery" value="7" />

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 71 of 77
 </map>
 </property>
</bean>

The query is very similar to the query and post job previously detailed,
however it is given a reference (note the attribute valueref) to a JMS
template defined in the jobs-core Spring configuration file. To make this
work, you would need to configure the JMS service in the jobs-core file,
and if you do not have experience in this area and no access to a Java
developer with some Spring/JMS experience, please contact JSS for
assistance.

Query and send to destination (such as HTTP)

This job runs a query and sends the results to one of the destinations
defined in the message sending framework. This functionality could be
used to regularly deliver a SOAP message to a third party.

An example is detailed below (and reduced for clarity):

 <!-- Define a job detail bean and trigger for performing a query
and sending to an HTTP destination -->
 <bean id="scheduler.jobs.queryAndSendToDestination.destination"

class="com.javasystemsolutions.xml.gateway.messagesending.HTTPDestin
ation">
 <property name="url" value="http://localhost:8181/target" />
 </bean>
 <bean id="scheduler.jobs.queryAndSendToDestination.example"
class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="applicationContextJobDataKey"
value="applicationContext" />
 <property name="jobClass"
value="com.javasystemsolutions.xml.gateway.jobs.QueryAndSendToDestin
ation" />
 <property name="jobDataAsMap">
 <map>
 <entry>
 <key><value>query</value></key>
 <value><![CDATA[
 <query>
 ...
 </query>
]]></value>
 </entry>
 <entry key="destination"
valueref="scheduler.jobs.queryAndSendToDestination.destination" />
 </map>
 </property>

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 72 of 77
 </bean>

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 73 of 77

Developing plugins

No integration product will do everything out of the box, and the XML
Gateway has a number of Java interfaces that can be used to develop
bespoke plugins to provide customised behaviour. The interfaces are
published as javadocs (available through the gateway portal page) and
described below.

To develop a plugin, you will need a resource with Java programming
knowledge that includes webservices and web applications.

Bespoke response builders

When pushing data into the gateway (via any create/modify/delete call),
an XML response is created and sent back to the client. A standard XML
Gateway response builder is used to generate the documented responses,
however bespoke response builders can be written by implementing the
interface
com.javasystemsolutions.xml.gateway.responses.XMLGatewayResponse
(found in the XML Gateway library files, ie xmlgateway.jar).

Implementations of this interface can be enabled on a system wide and
template level. Given that consistent responses are required for gateway
calls, this would usually be implemented on a system wide level because
not all gateway calls will result in a template being loaded, and hence, if
no template is loaded, no configured response builder within the template
can be loaded.

A system wide response builder is defined within the XML Gateway
Configuration file.

Template level response builders are discussed in the create/modify
manual page.

For more information on writing a response builder, ask JSS for an
example.

Webservice plugins

The webservice interface can be used by the AR System developer to
make use of the gateway through workflow. However, there will be many
instances where required functionality does not exist within the gateway
and can not be implemented through workflow. A good example of this
would be a system where an XML document must be sent to a third party,
and that third party will respond with another XML document. Decisions
then need to be made based on the data within the XML response
provided by the third party, and finally, a value can be passed back to the
workflow call.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 74 of 77
A webservice called queryAndInvokePlugin exists to perform this
functionality, where a query is performed against the AR System, and the
results are passed to an implementation of the Plugin interface. The Plugin
interface then does something with the XML produced from querying the
AR System (such as, for example, making another WS call and examining
the response), before the Plugin has to return a value to the AR System.

The classname of the Plugin implementation is passed through the
workflow call to queryAndInvokePlugin, and a set of parameters can also
be passed to the Plugin. This approach provides a very flexible plugin
interface and allows plugins to be developed by anyone with Java skills
and no AR System knowledge.

Sadly, we have only been able to allow a fixed number of parameters to
be passed to the webservice call because of AR System's limited
webservice support (it seems, on version 7.0, unable to consume a
webservice and populate an array). We have therefore limited the number
of parameters to ten however this can be increased by JSS if required.

Message sending destinations

The message sending framework provides the ability for implementations
of the Destination interface to be passed into a target. This allows a third
party to provide their own message sending destination given there will
always be the requirement for different message sending techniques. For
example, one may wish to create a set of Java stubs from a WSDL,
populate these stubs with data from a given XML Document and send the
stubs to a remote webservice.

Filters

Filters are used to convert text into XML before it is passed into the
create/modify interface. Bespoke filters can be written by implementing
the Filter interface. A filter simply translates an input stream into an XML
Document.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 75 of 77

Pre-production optimisation and system testing

Please read this section carefully: Your support contract relies on
evidence that this section has been reviewed and actioned.

It is important to ensure you load test the integration built with the XML
Gateway. This is true for any integration product and service being
deployed to a corporate network. There are no 'magic settings' to ensure
the XML Gateway (or any other message handling) integration performs
optimally and there are configuration/cache settings to consider in both
the gateway and the JVM.

AR System form caching

The gateway deliberately avoids exposing many cache settings in order to
reduce the configuration complexity. However, the AR System API is not
quick at retrieving AR System form information (such as the fields and the
associated data, ie maximum field length, enumerated string values, etc)
so a cache is maintained within the gateway. The number of forms held in
the cache is configured in the xmlgateway.xml file – see the
cachedFormFieldSets setting.

If you review the standard out log files with DEBUG logging enabled, you
will be able to see whether a form is being loaded from the cache or AR
System.

Action point: Consider your use of the gateway and how many forms are
referenced within the templates. Set this value to the number of forms
reference, but remember that the higher the figure, the greater memory
footprint required by the gateway.

Session handling

When dealing with user sessions, ie when a user authenticates with the
gateway, it is important to ensure the unauthenticate method is called
because this closes associated connections to the AR System server (ie
ARServerUser.logout()).

If building a web based application, do not assume users will click a logout
link – add a listener to the browser close window event to call
unauthenticate, ie.

window.onbeforeunload= function() {
 // call unauthenticate
}

It is also important to consider the session timeout (defined in the
web.xml file). A low session timeout (ie 5 minutes) will ensure connections
associated with a session are closed, and the session disposed, regardless
of whether the unauthenticate method is called by the client. Note, when

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

JSS XML Gateway Installation and usage - Page 76 of 77
a session is closed through timeout, it is equivalent to calling
unauthenticate.

Memory footprint

This figure is derived from the answer to the number of forms that require
caching. Again, there is no magic answer because if you are caching 100
small forms, the amount of memory required will be lower than 20 of the
CMDB forms that are known to have many hundreds of fields.

Once you've established the number of forms to cache, write a set of unit
tests that interact with the gateway and perform many transactions per
hour. This test should simulate real life use of the gateway. You can
monitor the gateway's memory usage by installing jconsole, a tool
shipped with the JDK. We have produced a video walkthrough on installing
this tool:

http://www.javasystemsolutions.com/jss/video/view/Mid Tier-JMX

This tool can be used to generate very helpful screenshots for presenting
to JSS when reporting a production issue. It is possible to run a production
system with the JMX port open so jconsole can be used to monitor a
production service.

Increasing the heap memory

The JVM heap memory is set by passing flags to the JVM. This is very well
documented online. The flags are -Xms (initial setting) and -Xmx
(maximum setting) – the values passed are in megabytes.

It is good practice to set the initial heap size to 90% of the maximum, so
to set a typical maximum of one gigabyte, the settings are as follows:

-Xmx920m -Xmx1024m

There is a very good reason to set the initial to 90% of the maximum, and
this is optimise the performance of the JVM's Garbage Collector. The GC
locks the JVM threads while memory is freed, so allowing 10% “headroom”
provides a much smaller amount of memory to free than, say, 50% of the
heap size.

When using Tomcat and other servlet engines, you wil often find the
configuration tool allows a user friendly way to set the initial and
maximum heap size. For example, it's in the Tomcat system tray
configuration tool when installed on Windows.

Increasing the PermGen size

One of the less well known settings is the amount of memory reserved for
PermGen (an area used for class definitions and other non-working data).
This has a default value of 64Mb which is inadequate for large applications

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/
http://www.javasystemsolutions.com/jss/video/view/MidTier-JMX

JSS XML Gateway Installation and usage - Page 77 of 77
loading many Java APIs. It is recommended that this is set to 128Mb for all
installations. To do this, set the JVM flag as follows:

-XX:MaxPermSize=128m

Searching the Internet on this topic will reveal many other flags and
discussions you can set to avoid this problem.

Reviewing log files for performance issues

The standard out log files provide a wealth of information for reviewing
the performance. During your load testing, if the gateway fails, you are
likely to find the following errors, often at the end of the log files. We
encourage you to read the log files and search for phrases below.

OutOfMemoryError

This means you've not got enough heap size allocated.

OutOfMemoryError: PermGen space

This means you've not got enough PermGen space allocated.

Logging in production

When running the gateway in production, set the log level to INFO (in
xmlgateway.xml) unless you are debugging an issue. The DEBUG or TRACE
settings not only write huge log files, but affect system performance
because writing to disc wastes valuable milliseconds that could be spent
processing transactions.

Performance logging

When running the gateway with the log level set to TRACE or DEBUG, all
create/update/delete/query and send message (through the message
sending framework) operations are timed and logged, along with the free
memory at that point in time.

If an operation takes longer than 5 seconds, a log entry at level WARN is
written that includes the time taken to perform the transaction.

http://www.javasystemsolutions.com

http://www.javasystemsolutions.com/

	Introduction
	AR System, SQL and LDAP integrations
	Videos

	Installing the XML Gateway
	Installing the XML Gateway and the Mid Tier together
	CMDB support

	Background and required knowledge
	XPath

	Getting started, quickly
	Creating a new AR System user through an XML post
	Performing a query against an AR System database
	Modifying an AR System user through an XML post

	Configuration files
	Primary configuration file – xmlgateway.xml
	AR System servers
	Encrypting AR System passwords

	HTTP create/modify bindings
	File fetchers
	POP3 fetchers

	Logging to a database

	Creating, updating and deleting records
	Location of templates
	Performing your first transaction
	Template structure
	The root node
	Transaction ID
	Email on error
	Form definitions
	Target object (setting the form)
	Set field
	Setting a field to null
	Conditional behaviour

	Field mapping
	Setting a field by an XPath query
	Setting a field to null
	Conditional behaviour

	Importing attachments
	Controlling the create/modify/delete functionality

	Performing multiple operations with a single formDefinition
	Field limits
	Field type conversion

	XML responses to create, modify and delete transactions
	Additional operations
	dateFormat
	timezone
	queryFieldFromXPath
	setFieldFromQuery
	onError
	setMessage
	setGatewayValue
	secure
	Using AR System groups

	schema
	namespaces
	Saxon vs Xerces

	responseBuilder
	filter
	CSV
	JSON
	Swift

	filter-class
	Impersonating a different AR System user
	Checksum

	Functions
	Checksum
	Encrypt

	Throttling

	Querying the AR System
	Location of templates
	Performing your first transaction
	Query requests
	Template structure
	The root node
	Search criteria
	Specifying the XML response template
	Specifying a result field

	Additional operations
	Email on error
	Namespaces
	Securing a template
	Validating against a schema
	Changing the HTTP content type
	Query statistics generated by the gateway
	Removing elements
	AR System server info and statistics
	Attachments
	Diary fields
	Retrieving field properties
	Mark fields on query
	XML fragments

	Complex query example
	Sorting results
	Parameterised queries
	Chaining query templates
	Encouraging portable templates

	XSL Transformations
	Filters
	CSV
	JSON
	Swift
	Setting file download headers
	filter-class

	Template based filters
	Globally
	Configurations

	Setting filter on query request
	JSON based queries
	The AR System impersonate feature
	Throttling

	Securing templates through client authentication
	HTTP URLs exposed by the gateway
	Performing create/modify operations
	Performing query operations
	Authentication

	Integrating with the gateway with other systems
	Java Messaging Services
	Integration technique for create/modify/delete
	Integration technique for queries
	Configuration files
	Core configuration
	XML Gateway JMS components
	Create/modify message listener
	Query event message listener

	Webservices exposed by the gateway
	Locating the WSDLs
	Important note

	Services provided by the XML Gateway WSDL
	Create and modify
	Querying
	Querying through HTTP Query bindings
	Query and forward to URL
	Query and forward to SOAP endpoint
	Query and forward to another XML Gateway
	Query and forward to a Java Messaging Service
	Query and forward to a message sending destination
	Query ARS and forward to message sending framework
	Query ARS and invoke a Plugin
	Combined post and query
	Combined query and post
	Authenticate
	Unauthenticate
	Perform an XPath select

	Message sending framework
	Overview
	Third party to AR System
	AR System to third party

	Key components of the message sending functionality
	Destinations
	HTTPDestination
	SampleDestination
	WebserviceDestination

	Message handlers
	DefaultMessageHandler
	ARSMessageHandler

	Error handlers
	Triggers
	Methods of operation

	Invoking through a webservice

	Using the scheduler
	Spring configuration file
	Core scheduler

	Triggers
	Jobs
	Query and post to gateway
	Query and post to a Java Messaging Service
	Query and send to destination (such as HTTP)

	Developing plugins
	Bespoke response builders
	Webservice plugins
	Message sending destinations
	Filters

	Pre-production optimisation and system testing
	AR System form caching
	Session handling
	Memory footprint
	Increasing the heap memory
	Increasing the PermGen size

	Reviewing log files for performance issues
	OutOfMemoryError
	OutOfMemoryError: PermGen space

	Logging in production
	Performance logging

